Math 204A (Number Theory), UCSD, fall 2020

Problem Set 2 - due Thursday, October 22, 2020
For the Chinese remainder theorem for Dedekind domains, see for example Neukirch Theorem I.3.6.

1. Let R be a Dedekind domain. Prove that for every nonzero ideal I of $R, R / I$ is a principal ideal ring. (Hint: use the Chinese remainder theorem to reduce to the case where I is a power of a prime \mathfrak{p}. In that case, choose $\pi \in \mathfrak{p} \backslash \mathfrak{p}^{2}$ and consider the powers of π.)
2. Let R be a Dedekind domain. Prove that every ideal of R can be generated by at most two elements.
3. Let R be the ring $\mathbb{Z}[\alpha] /\left(\alpha^{3}-\alpha-1\right)$. Show that the prime factorization of the principal ideal $23 R$ is given by

$$
23 R=(23, \alpha-10)^{2}(23, \alpha-3)
$$

(In particular, you should show that the factors are indeed prime.)
4. Prove that the constant 2^{n} in Minkowski's lattice point theorem cannot be improved.
5. Let K be a number field. Using the finiteness of the class group of K, prove that there exists a finite extension L of K such that every ideal of \mathcal{O}_{K} generates a principal ideal of \mathcal{O}_{L}.
6. Let $p>2$ be a prime number and put $K=\mathbb{Q}\left(\zeta_{p}\right)$.
(a) Compute $\operatorname{Trace}_{K / \mathbb{Q}}\left(\zeta_{p}^{j}\right)$ for $j=0, \ldots, p-1$.
(b) Compute $\operatorname{Norm}_{K / \mathbb{Q}}\left(1-\zeta_{p}\right)$.
(c) Show that $\left(1-\zeta_{p}\right) \mathcal{O}_{K} \cap \mathbb{Z}=p \mathbb{Z}$. (Note: we will use this later to show that $\mathcal{O}_{K}=\mathbb{Z}\left[\zeta_{p}\right]$, so don't assume this here.)

