Math 204A (Number Theory), UCSD, fall 2020

Problem Set 4 - due Thursday, November 5, 2020
Unless otherwise specified, you may use SageMath (or another computer algebra system, but please specify which one) without restriction.

1. Let R be a Dedekind domain. Prove that the following statements are equivalent.
(a) The ring R is a principal ideal domain.
(b) The ring R is a unique factorization domain.
(c) The class group of R is trivial.
(Hint: for $(\mathrm{b}) \Longrightarrow(\mathrm{c})$, it is enough to show that every prime ideal \mathfrak{p} is trivial. First show that \mathfrak{p} contains an irreducible element α, then show that α generates a nonzero prime ideal.)
2. Let p be an odd prime and put $K=\mathbb{Q}\left(\zeta_{p}\right)$. Using results from previous homework, show that $\mathcal{O}_{K}=\mathbb{Z}\left[\zeta_{p}\right]$.
3. Let p be an odd prime.
(a) By computing signatures, verify that $\mathbb{Z}\left[\zeta_{p}+\zeta_{p}^{-1}\right]^{\times}$is a subgroup of finite index of $\mathbb{Z}\left[\zeta_{p}\right]^{\times}$.
(b) Let c be the nontrivial automorphism of $\mathbb{Q}\left(\zeta_{p}\right)$ fixing $\mathbb{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Prove that for any $\alpha \in \mathbb{Z}\left[\zeta_{p}\right]^{\times}, \alpha / \alpha^{c}$ is a root of unity. (Hint: use PS1 problem 7.)
(c) Prove that the quotient $\mathbb{Z}\left[\zeta_{p}\right]^{\times} / \mathbb{Z}\left[\zeta_{p}+\zeta_{p}^{-1}\right]^{\times}$is generated by ζ_{p}. (Hint: first use (b) to show that if $\alpha \in \mathbb{Z}\left[\zeta_{p}\right]^{\times}$, then there exists $j \in\{0, \ldots, p-1\}$ such that $\left.\left(\zeta_{p}^{j} \alpha\right)^{2} \in \mathbb{Z}\left[\zeta_{p}+\zeta_{p}^{-1}\right]^{\times}.\right)$
4. Put $K=\mathbb{Q}\left(\zeta_{7}\right)$.
(a) Show by "pure thought" that K contains a subfield of degree 2 over \mathbb{Q} and a subfield of degree 3 over \mathbb{Q}.
(b) Describe each of these fields as $\mathbb{Q}[\alpha] /(P(\alpha))$ for some irreducible polynomial $P(x) \in \mathbb{Q}[x]$.
5. Let K be the number field $\mathbb{Q}[\alpha] /\left(\alpha^{3}-\alpha-1\right)$. Write some code in SageMath (or another system) to show that there is no modulus $m \leq 100$ for which the splitting of a prime p in K is determined by the reduction of p modulo m. (That is, for each m, you should find two primes with the same remainder modulo m but different splitting behavior.)
