Math 204A (Number Theory), UCSD, fall 2020 Problem Set 5 – due Thursday, November 12, 2020

- 1. In class, we used the fact that if K, L are number fields such that $K \cap L = \mathbb{Q}$ and the discriminants of K and L are relatively prime, then an integral basis for \mathcal{O}_{KL} can be obtained by taking an integral basis $\alpha_1, \ldots, \alpha_m$ of \mathcal{O}_K and an integral basis β_1, \ldots, β_n of \mathcal{O}_L , then forming the products $\alpha_i \beta_j$ for $1 \leq i \leq m, 1 \leq j \leq n$.
 - (a) Read a proof of this. No answer required except a citation.
 - (b) Give an example with K, L quadratic in which $K \cap L = \mathbb{Q}$, the discriminants of K and L are not relatively prime, and this recipe *does not* an integral basis for \mathcal{O}_{KL} .
 - (c) Give an example with K, L quadratic in which $K \cap L = \mathbb{Q}$, the discriminants of K and L are not relatively prime, and this recipe *does* give an integral basis for \mathcal{O}_{KL} .
- 2. (a) Show that for any number field $K \neq \mathbb{Q}$, at least one prime of \mathbb{Q} must ramify in K. (Hint: recall what we know about discriminants from earlier homework.)
 - (b) Let K/\mathbb{Q} be a non-Galois cubic extension with squarefree discriminant, let L be the Galois closure of K, and let M be the quadratic subextension of L. Prove that no prime of M ramifies in L. (Optional: do the same for K/\mathbb{Q} of degree nwith Galois group S_n .)
- 3. Let K be the number field $\mathbb{Q}[\alpha]/(\alpha^3 \alpha 1)$. Let L be the Galois closure of K. The previous exercise implies that no prime of $\mathbb{Q}(\sqrt{-23})$ ramifies in L. Check this explicitly for the prime above 23. (Hint: you may query SageMath for the ring of integers of L.)
- 4. For each of the following statements, find an example of a prime p and two quadratic extensions K and L of \mathbb{Q} exhibiting this particular behavior. Your four examples should be distinct.
 - (a) The prime p can be totally ramified in K and L without being totally ramified in KL.
 - (b) The fields K and L can both contain unique primes over p, while KL does not.
 - (c) The prime p can be (unramified and) inert in both K and L without being inert in KL.
 - (d) There can be (unramified) primes over p of inertia degree 1 in both K and L, but not in KL.
- 5. Let L/K be a finite separable extension of fields with Galois closure M and Galois group G. Put H = Gal(M/L). Prove that $\bigcap_{x \in G} x^{-1}Hx = \{e\}$.
- 6. Let L/K be an extension of number fields with Galois closure M and Galois group G. Put H = Gal(M/L).

- (a) Let p be a prime ideal of K. Let q be a prime ideal of M above p. Show that the action of G on the prime ideals of M above p induces a bijection between the double coset space H\G/G_q and the set of primes of L above p (this was stated in lecture).
- (b) Suppose that \mathfrak{p} does not ramify in M. Show that the inertia degree of the prime of L above \mathfrak{p} corresponding to the double coset $HxG_{\mathfrak{q}}$ equals the index $[G_{\mathfrak{q}} : G_{\mathfrak{q}} \cap x^{-1}Hx]$.
- (c) Optional: extend (b) to the case where \mathbf{p} may ramify in M.
- 7. With notation as in the previous exercise, assume that every element of G occurs as the Frobenius element for some unramified prime of M (this is a corollary of the Chebotarev density theorem). Show that if every prime of \mathcal{O}_K which does not ramify in M has the property that all of the primes above it in L have the *same* inertial degree, then L/K is Galois. (Hint: the decomposition group of an unramified prime is cyclic, so it has only one subgroup of any given order.)