Math 204A (Number Theory), UCSD, fall 2020
Problem Set 6 – due Thursday, November 19, 2020

1. (a) Let \(N \geq 3 \) be an integer and let \(\Phi_N \) be the \(N \)-th cyclotomic polynomial. Prove that for every integer \(m \), every prime divisor of \(\Phi_N(m) \) not dividing \(N \) is congruent to 1 modulo \(N \).

(b) In class, I stated that for every number field \(K \), there exist infinitely many primes \(p \) which split completely in \(K \). Prove this for the cyclotomic field \(K = \mathbb{Q}(\zeta_N) \) \textit{without} using Dirichlet or Chebotarev. (Hint: suppose there are only finitely many, take their product...)

2. Let \(L/K \) be an extension of number fields with Galois closure \(M \). Let \(p \) be a prime of \(K \).

 (a) Prove that if \(p \) is unramified in \(L \), then it is unramified in \(M \) also.

 (b) Prove that if \(p \) is unramified and totally split in \(L \), then it is totally split in \(M \) also.

 (Hint for both parts: put \(G = \text{Gal}(M/K) \) and \(H = \text{Gal}(M/L) \). Pick a prime \(q \) of \(M \) above \(p \) and consider how \(G_q \) or \(I_q \) intersects the various conjugates of \(H \).)

3. Let \(m \) be an integer which is not a perfect square, and put \(K = \mathbb{Q}(m^{1/4}) \). Let \(L \) be the Galois closure of \(K/\mathbb{Q} \). Let \(p \) be an odd prime not dividing \(m \) and let \(q \) be a prime above \(p \) in \(L \). For each possible value for the decomposition group \(G_q \), describe the corresponding splitting of \(p \) in \(K \).

4. (a) Let \(k \) be a field. Prove that the ring of formal power series \(k[[t]] \) is a discrete valuation ring.

 (b) Prove that the subring of \(\mathbb{R}[[t]] \) consisting of power series with positive radius of convergence is a discrete valuation ring.

5. Prove that for every finite abelian group \(A \), there exists a Galois number field \(K \) with \(\text{Gal}(K/\mathbb{Q}) \cong A \). (Hint: find \(K \) inside a suitable cyclotomic number field. Remember that \(A \) is a product of cyclic groups.)