Math 204A (Number Theory), UCSD, fall 2020

 Problem Set 7 - due Thursday, December 3, 20201. (a) Let p be a prime number. Prove that for any commutative ring R, any ideal I, and any $x, y \in R$ such that $x \equiv y(\bmod I)$, we have $x^{p} \equiv y^{p}\left(\bmod I^{p}+p I\right)$.
(b) Let L / K be a Galois extension of number fields, let \mathfrak{q} be a nonzero prime ideal of \mathcal{O}_{L}, and choose $\pi \in \mathfrak{q} \backslash \mathfrak{q}^{2}$. Suppose that $\sigma \in \operatorname{Gal}(L / K)_{\mathfrak{q}, 0}$ satisfies $\sigma(\pi) / \pi \equiv 1$ $\left(\bmod \mathfrak{q}^{n}\right)$ for some positive integer n. Prove that $\sigma(\alpha) \equiv \alpha\left(\bmod \mathfrak{q}^{n+1}\right)$ for all $\alpha \in \mathcal{O}_{L}$. (Hint: every element of \mathcal{O}_{L} can be written as $\beta^{p}+\pi \gamma$ for some $\beta, \gamma \in \mathcal{O}_{L}$, and similarly even if you replace the exponent p with a higher power of p.)
2. Let K be the number field $\mathbb{Q}\left(2^{1 / 4}\right)$. Let L be the Galois closure of K and put $G=$ $\operatorname{Gal}(L / K)$.
(a) Compute the ring of integers \mathcal{O}_{L} (e.g., using SageMath).
(b) Check that there is a single prime \mathfrak{q} of L above 2 and that \mathfrak{q} is totally ramified over 2.
(c) Compute the groups $G_{\mathfrak{q}, s}$ for all s.
(d) Use the answer to (c) to compute the different of L / \mathbb{Q}.
3. Let L / K be a Galois extension of number fields. Let \mathfrak{p} be a prime of K lying above the prime p of \mathbb{Q}. Let \mathfrak{q} be a prime above L. Suppose that $e=e(\mathfrak{q} / \mathfrak{p})$ is not divisible by p (that is, \mathfrak{q} is tamely ramified over \mathfrak{p}).
(a) Show that $G_{q, 1}$ is the trivial group. (Hint: use what we know about the quotients $\left.G_{\mathfrak{q}, s} / G_{\mathfrak{q}, s+1}.\right)$
(b) Show that

$$
\mathcal{D}_{\mathcal{O}_{L, \mathfrak{q}} / \mathcal{O}_{K, \mathfrak{p}}}=\mathfrak{q}^{e-1}
$$

(Hint: first reduce to the case $f(\mathfrak{q} / \mathfrak{p})=1$.)
4. Prove that an element x of $\mathbb{Z}_{2} \backslash 2 \mathbb{Z}_{2}$ is a perfect square if and only if $x \equiv 1(\bmod 8)$.
5. (a) Prove that $\mathbb{Z} \llbracket x \rrbracket /(x-p) \cong \mathbb{Z}_{p}$. This is done in Neukirch, but try it yourself first.
(b) Prove that $\mathbb{Z}((x)) /(x-p) \cong \mathbb{Q}_{p}$.
6. Prove the following facts that were stated without proof in lecture.
(a) If p is a prime and m is a positive integer, then

$$
{\underset{n}{\lim }}_{\underset{Z}{ }}^{\mathbb{Z}}\left(p^{m}\right)^{n} \mathbb{Z} \cong \mathbb{Z}_{p}
$$

(b) If m_{1}, m_{2} are coprime integers greater than 1 , then
7. (a) Prove that the field \mathbb{R} has no automorphisms other than the identity, using the fact that the squares in \mathbb{R} are precisely the nonnegative elements.
(b) Let $p>2$ be a prime. Show that every element of \mathbb{Z}_{p} congruent to 1 modulo p^{2} has a p-th root, using the binomial series.
(c) Optional: For $p>2$, prove that the field \mathbb{Q}_{p} has no automorphisms other than the identity. (See Zulip for hints.)

