Math 204A (Number Theory), UCSD, fall 2020 Problem Set 7 – due Thursday, December 3, 2020

- 1. (a) Let p be a prime number. Prove that for any commutative ring R, any ideal I, and any $x, y \in R$ such that $x \equiv y \pmod{I}$, we have $x^p \equiv y^p \pmod{I^p + pI}$.
 - (b) Let L/K be a Galois extension of number fields, let \mathbf{q} be a nonzero prime ideal of \mathcal{O}_L , and choose $\pi \in \mathbf{q} \setminus \mathbf{q}^2$. Suppose that $\sigma \in \operatorname{Gal}(L/K)_{\mathbf{q},0}$ satisfies $\sigma(\pi)/\pi \equiv 1$ (mod \mathbf{q}^n) for some positive integer n. Prove that $\sigma(\alpha) \equiv \alpha \pmod{\mathbf{q}^{n+1}}$ for all $\alpha \in \mathcal{O}_L$. (Hint: every element of \mathcal{O}_L can be written as $\beta^p + \pi\gamma$ for some $\beta, \gamma \in \mathcal{O}_L$, and similarly even if you replace the exponent p with a higher power of p.)
- 2. Let K be the number field $\mathbb{Q}(2^{1/4})$. Let L be the Galois closure of K and put $G = \operatorname{Gal}(L/K)$.
 - (a) Compute the ring of integers \mathcal{O}_L (e.g., using SageMath).
 - (b) Check that there is a single prime \mathfrak{q} of L above 2 and that \mathfrak{q} is totally ramified over 2.
 - (c) Compute the groups $G_{\mathfrak{q},s}$ for all s.
 - (d) Use the answer to (c) to compute the different of L/\mathbb{Q} .
- 3. Let L/K be a Galois extension of number fields. Let \mathfrak{p} be a prime of K lying above the prime p of \mathbb{Q} . Let \mathfrak{q} be a prime above L. Suppose that $e = e(\mathfrak{q}/\mathfrak{p})$ is not divisible by p (that is, \mathfrak{q} is *tamely ramified* over \mathfrak{p}).
 - (a) Show that $G_{q,1}$ is the trivial group. (Hint: use what we know about the quotients $G_{q,s}/G_{q,s+1}$.)
 - (b) Show that

$$\mathcal{D}_{\mathcal{O}_{L,\mathfrak{q}}/\mathcal{O}_{K,\mathfrak{p}}} = \mathfrak{q}^{e-1}.$$

(Hint: first reduce to the case f(q/p) = 1.)

- 4. Prove that an element x of $\mathbb{Z}_2 \setminus 2\mathbb{Z}_2$ is a perfect square if and only if $x \equiv 1 \pmod{8}$.
- 5. (a) Prove that Z[[x]]/(x − p) ≅ Z_p. This is done in Neukirch, but try it yourself first.
 (b) Prove that Z((x))/(x − p) ≅ Q_p.
- 6. Prove the following facts that were stated without proof in lecture.
 - (a) If p is a prime and m is a positive integer, then

$$\lim_{n} \mathbb{Z}/(p^m)^n \mathbb{Z} \cong \mathbb{Z}_p.$$

(b) If m_1, m_2 are coprime integers greater than 1, then

$$\varprojlim_{n} \mathbb{Z}/(m_{1}m_{2})^{n}\mathbb{Z} \cong \varprojlim_{n} \mathbb{Z}/m_{1}^{n}\mathbb{Z} \times \varprojlim_{n} \mathbb{Z}/m_{2}^{n}\mathbb{Z}.$$

- 7. (a) Prove that the field \mathbb{R} has no automorphisms other than the identity, using the fact that the squares in \mathbb{R} are precisely the nonnegative elements.
 - (b) Let p > 2 be a prime. Show that every element of \mathbb{Z}_p congruent to 1 modulo p^2 has a *p*-th root, using the binomial series.
 - (c) Optional: For p > 2, prove that the field \mathbb{Q}_p has no automorphisms other than the identity. (See Zulip for hints.)