Math 204A (Number Theory), UCSD, fall 2020

 Problem Set 8 - due Thursday, December 10, 20201. Show that every quadratic extension of \mathbb{Q}_{2} is contained in $\mathbb{Q}_{2}\left(\zeta_{24}\right)$. (Hint: first compute $\left.\mathbb{Q}_{2}^{*} /\left(\mathbb{Q}_{2}^{*}\right)^{2}.\right)$ This is a first step towards the Kronecker-Weber theorem, which we will discuss in more detail in Math 204B.
2. Let L / K be an extension of number fields. Let \mathfrak{p} be a prime ideal of K and suppose that there is a unique prime ideal \mathfrak{q} of L above \mathfrak{p}. Let $\alpha \in \mathcal{O}_{K}$ be an element whose image in $\mathcal{O}_{L} / \mathfrak{q}$ is a primitive element over $\mathcal{O}_{K} / \mathfrak{p}$.
(a) Let $P(T) \in \mathcal{O}_{K}[T]$ be a monic polynomial whose reduction modulo \mathfrak{q} is the minimal polynomial of α over $\mathcal{O}_{K} / \mathfrak{p}$. Show that there exists $\beta \in \mathcal{O}_{L}$ congruent to α modulo \mathfrak{q} such that $P(\beta) \in \mathfrak{q} \backslash \mathfrak{q}^{2}$. (Hint: use the first-order Taylor expansion of P at α, as in the proof of Hensel's lemma.)
(b) For β as in (a), prove that $\mathcal{O}_{L, \mathfrak{q}}=\mathcal{O}_{K, \mathfrak{p}}[\beta]$. (This is Lemma II.10.4 of Neukirch, but try it yourself first.)
3. Let L / K be a Galois extension of number fields of degree n. Let \mathfrak{q} be a prime ideal of L lying above the prime ideal \mathfrak{p} of K.
(a) Prove that the \mathfrak{q}-adic valuation of the different of L / K is at most $e-1+v_{\mathfrak{q}}(e)$ where $e=e(\mathfrak{q} / \mathfrak{p})$. (Hint: reduce to the case where $e=[L: K]$, then look at the minimal polynomial of an element of $\mathfrak{q}-\mathfrak{q}^{2}$. If you get stuck, see Theorem III.2.6 of Neukirch.)
(b) Use (a) to prove that for any fixed positive integers n and D, there are only finitely many number fields of degree n with discriminant $\pm D$. Recall that this was the missing step in the proof of the Hermite-Minkowski theorem.
4. (a) Let K be a field complete with respect to a nonarchimedean absolute value. Let $P(T) \in \mathcal{O}_{K}[T]$ be a polynomial, and suppose $\alpha \in \mathcal{O}_{K}$ satisfies

$$
|P(\alpha)|<\left|P^{\prime}(\alpha)\right|^{2} .
$$

Define the sequence $\alpha=\alpha_{0}, \alpha_{1}, \ldots$ by the Newton-Raphson recursion

$$
\alpha_{n+1}=\alpha_{n}-\frac{P\left(\alpha_{n}\right)}{P^{\prime}\left(\alpha_{n}\right)}
$$

Prove that this sequence converges to a root of P in K. (Hint: show that $\left|P^{\prime}\left(\alpha_{n+1}\right)\right|=\left|P^{\prime}\left(\alpha_{n}\right)\right|$ but $\left|P\left(\alpha_{n+1}\right)\right|$ is much smaller than $\left.\left|P\left(\alpha_{n}\right)\right|.\right)$
(b) Apply (a) to recover the fact that any element of \mathbb{Z}_{2} congruent to 1 modulo 8 is a perfect square, then formulate an analogous statement for any finite extension K of \mathbb{Q}_{2}.
5. (a) Let K be a field equipped with (but not necessarily complete with respect to) a nonarchimedean absolute value $|\cdot|_{K}$. Let $K(T)$ be the fraction field of the polynomial ring $K[T]$. Prove that there exists a unique absolute value $|\cdot|_{G}$ on $K(T)$ such that for all $f=\sum_{n} f_{n} T^{n} \in K[T]$,

$$
|f|_{G}=\max \left\{\left|f_{n}\right|_{K}: n=0,1, \ldots\right\}
$$

This is called the Gauss norm on $K(T)$.
(b) Let L be any field containing K, not necessarily a finite extension. Prove that there exists at least one extension of $|\cdot|_{K}$ to an absolute value on L. (Hint: using Zorn's lemma, reduce to the case where L is generated over K by a single element α. If α is algebraic over K, use what we proved in class; otherwise, use (a).)
6. (Optional) In this exercise, we give Monsky's amazing proof of the following theorem: a square in the Euclidean plane cannot be dissected into an odd number of triangles, all of the same area.
(a) Let $|\cdot|_{2}$ be a nonarchimedean absolute value on \mathbb{R} such that $|2|_{2}<1$ (which exists by the previous exercise, applying (b) with $K=\mathbb{Q}$ and $|\cdot|_{K}=|\cdot|_{2}$). Define the following partition of \mathbb{R}^{2} into three subsets:

$$
\begin{aligned}
& S_{1}=\left\{(x, y) \in \mathbb{R}^{2}:|x|_{2}<1,|y|_{2}<1\right\} \\
& S_{2}=\left\{(x, y) \in \mathbb{R}^{2}:|x|_{2} \geq 1,|x|_{2} \geq|y|_{2}\right\} \\
& S_{3}=\left\{(x, y) \in \mathbb{R}^{2}:|y|_{2} \geq 1,|y|_{2}>|x|_{2}\right\} .
\end{aligned}
$$

Show that all three sets are stable under translation by any $(x, y) \in S_{1}$.
(b) Prove that no line in \mathbb{R}^{2} intersects all three subsets. (Hint: reduce to the case where the line passes through $(0,0)$.)
(c) Suppose we have a dissection of the square $[0,1] \times[0,1]$ into triangles. Show that there exists a triangle with one vertex in each of S_{1}, S_{2}, S_{3}. (Hint: assuming there is no such triangle, count segments with one vertex in S_{1} and the other in S_{2} and find a parity violation. A result of a similar nature is Sperner's lemma; see Zulip for more discussion.)
(d) Deduce that if there are m triangles in the dissection and they all have area $1 / m$, then $|1 / m|_{2}<1$ and therefore m is even.

