
Math 204A (Number Theory), UCSD, fall 2020
Problem Set 8 – due Thursday, December 10, 2020

1. Show that every quadratic extension of Q2 is contained in Q2(ζ24). (Hint: first compute
Q∗2/(Q∗2)2.) This is a first step towards the Kronecker-Weber theorem, which we will
discuss in more detail in Math 204B.

2. Let L/K be an extension of number fields. Let p be a prime ideal of K and suppose
that there is a unique prime ideal q of L above p. Let α ∈ OK be an element whose
image in OL/q is a primitive element over OK/p.

(a) Let P (T ) ∈ OK [T ] be a monic polynomial whose reduction modulo q is the
minimal polynomial of α over OK/p. Show that there exists β ∈ OL congruent to
α modulo q such that P (β) ∈ q \ q2. (Hint: use the first-order Taylor expansion
of P at α, as in the proof of Hensel’s lemma.)

(b) For β as in (a), prove that OL,q = OK,p[β]. (This is Lemma II.10.4 of Neukirch,
but try it yourself first.)

3. Let L/K be a Galois extension of number fields of degree n. Let q be a prime ideal of
L lying above the prime ideal p of K.

(a) Prove that the q-adic valuation of the different of L/K is at most e − 1 + vq(e)
where e = e(q/p). (Hint: reduce to the case where e = [L : K], then look at the
minimal polynomial of an element of q− q2. If you get stuck, see Theorem III.2.6
of Neukirch.)

(b) Use (a) to prove that for any fixed positive integers n and D, there are only finitely
many number fields of degree n with discriminant ±D. Recall that this was the
missing step in the proof of the Hermite-Minkowski theorem.

4. (a) Let K be a field complete with respect to a nonarchimedean absolute value. Let
P (T ) ∈ OK [T ] be a polynomial, and suppose α ∈ OK satisfies

|P (α)| < |P ′(α)|2.

Define the sequence α = α0, α1, . . . by the Newton-Raphson recursion

αn+1 = αn −
P (αn)

P ′(αn)
.

Prove that this sequence converges to a root of P in K. (Hint: show that
|P ′(αn+1)| = |P ′(αn)| but |P (αn+1)| is much smaller than |P (αn)|.)

(b) Apply (a) to recover the fact that any element of Z2 congruent to 1 modulo 8 is
a perfect square, then formulate an analogous statement for any finite extension
K of Q2.

1



5. (a) Let K be a field equipped with (but not necessarily complete with respect to)
a nonarchimedean absolute value | · |K . Let K(T ) be the fraction field of the
polynomial ring K[T ]. Prove that there exists a unique absolute value | · |G on
K(T ) such that for all f =

∑
n fnT

n ∈ K[T ],

|f |G = max{|fn|K : n = 0, 1, . . . }.

This is called the Gauss norm on K(T ).

(b) Let L be any field containing K, not necessarily a finite extension. Prove that
there exists at least one extension of | · |K to an absolute value on L. (Hint: using
Zorn’s lemma, reduce to the case where L is generated over K by a single element
α. If α is algebraic over K, use what we proved in class; otherwise, use (a).)

6. (Optional) In this exercise, we give Monsky’s amazing proof of the following theorem:
a square in the Euclidean plane cannot be dissected into an odd number of triangles,
all of the same area.

(a) Let | · |2 be a nonarchimedean absolute value on R such that |2|2 < 1 (which exists
by the previous exercise, applying (b) with K = Q and | · |K = | · |2). Define the
following partition of R2 into three subsets:

S1 = {(x, y) ∈ R2 : |x|2 < 1, |y|2 < 1}
S2 = {(x, y) ∈ R2 : |x|2 ≥ 1, |x|2 ≥ |y|2}
S3 = {(x, y) ∈ R2 : |y|2 ≥ 1, |y|2 > |x|2}.

Show that all three sets are stable under translation by any (x, y) ∈ S1.

(b) Prove that no line in R2 intersects all three subsets. (Hint: reduce to the case
where the line passes through (0, 0).)

(c) Suppose we have a dissection of the square [0, 1]× [0, 1] into triangles. Show that
there exists a triangle with one vertex in each of S1, S2, S3. (Hint: assuming there
is no such triangle, count segments with one vertex in S1 and the other in S2 and
find a parity violation. A result of a similar nature is Sperner’s lemma; see Zulip
for more discussion.)

(d) Deduce that if there are m triangles in the dissection and they all have area 1/m,
then |1/m|2 < 1 and therefore m is even.
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