Math 204A (Number Theory), UCSD, fall 2020 Problem Set 8 – due Thursday, December 10, 2020

- 1. Show that every quadratic extension of \mathbb{Q}_2 is contained in $\mathbb{Q}_2(\zeta_{24})$. (Hint: first compute $\mathbb{Q}_2^*/(\mathbb{Q}_2^*)^2$.) This is a first step towards the Kronecker-Weber theorem, which we will discuss in more detail in Math 204B.
- 2. Let L/K be an extension of number fields. Let \mathfrak{p} be a prime ideal of K and suppose that there is a *unique* prime ideal \mathfrak{q} of L above \mathfrak{p} . Let $\alpha \in \mathcal{O}_K$ be an element whose image in $\mathcal{O}_L/\mathfrak{q}$ is a primitive element over $\mathcal{O}_K/\mathfrak{p}$.
 - (a) Let $P(T) \in \mathcal{O}_K[T]$ be a monic polynomial whose reduction modulo \mathfrak{q} is the minimal polynomial of α over $\mathcal{O}_K/\mathfrak{p}$. Show that there exists $\beta \in \mathcal{O}_L$ congruent to α modulo \mathfrak{q} such that $P(\beta) \in \mathfrak{q} \setminus \mathfrak{q}^2$. (Hint: use the first-order Taylor expansion of P at α , as in the proof of Hensel's lemma.)
 - (b) For β as in (a), prove that $\mathcal{O}_{L,\mathfrak{q}} = \mathcal{O}_{K,\mathfrak{p}}[\beta]$. (This is Lemma II.10.4 of Neukirch, but try it yourself first.)
- 3. Let L/K be a Galois extension of number fields of degree n. Let \mathfrak{q} be a prime ideal of L lying above the prime ideal \mathfrak{p} of K.
 - (a) Prove that the \mathfrak{q} -adic valuation of the different of L/K is at most $e 1 + v_{\mathfrak{q}}(e)$ where $e = e(\mathfrak{q}/\mathfrak{p})$. (Hint: reduce to the case where e = [L : K], then look at the minimal polynomial of an element of $\mathfrak{q} - \mathfrak{q}^2$. If you get stuck, see Theorem III.2.6 of Neukirch.)
 - (b) Use (a) to prove that for any fixed positive integers n and D, there are only finitely many number fields of degree n with discriminant $\pm D$. Recall that this was the missing step in the proof of the Hermite-Minkowski theorem.
- 4. (a) Let K be a field complete with respect to a nonarchimedean absolute value. Let $P(T) \in \mathcal{O}_K[T]$ be a polynomial, and suppose $\alpha \in \mathcal{O}_K$ satisfies

$$|P(\alpha)| < |P'(\alpha)|^2.$$

Define the sequence $\alpha = \alpha_0, \alpha_1, \ldots$ by the Newton-Raphson recursion

$$\alpha_{n+1} = \alpha_n - \frac{P(\alpha_n)}{P'(\alpha_n)}.$$

Prove that this sequence converges to a root of P in K. (Hint: show that $|P'(\alpha_{n+1})| = |P'(\alpha_n)|$ but $|P(\alpha_{n+1})|$ is much smaller than $|P(\alpha_n)|$.)

(b) Apply (a) to recover the fact that any element of \mathbb{Z}_2 congruent to 1 modulo 8 is a perfect square, then formulate an analogous statement for any finite extension K of \mathbb{Q}_2 .

5. (a) Let K be a field equipped with (but not necessarily complete with respect to) a nonarchimedean absolute value $|\cdot|_K$. Let K(T) be the fraction field of the polynomial ring K[T]. Prove that there exists a unique absolute value $|\cdot|_G$ on K(T) such that for all $f = \sum_n f_n T^n \in K[T]$,

$$|f|_G = \max\{|f_n|_K : n = 0, 1, \dots\}.$$

This is called the *Gauss norm* on K(T).

- (b) Let L be any field containing K, not necessarily a finite extension. Prove that there exists at least one extension of $|\cdot|_K$ to an absolute value on L. (Hint: using Zorn's lemma, reduce to the case where L is generated over K by a single element α . If α is algebraic over K, use what we proved in class; otherwise, use (a).)
- 6. (Optional) In this exercise, we give Monsky's amazing proof of the following theorem: a square in the Euclidean plane cannot be dissected into an *odd* number of triangles, all of the same area.
 - (a) Let $|\cdot|_2$ be a nonarchimedean absolute value on \mathbb{R} such that $|2|_2 < 1$ (which exists by the previous exercise, applying (b) with $K = \mathbb{Q}$ and $|\cdot|_K = |\cdot|_2$). Define the following partition of \mathbb{R}^2 into three subsets:

$$S_{1} = \{(x, y) \in \mathbb{R}^{2} : |x|_{2} < 1, |y|_{2} < 1\}$$

$$S_{2} = \{(x, y) \in \mathbb{R}^{2} : |x|_{2} \ge 1, |x|_{2} \ge |y|_{2}\}$$

$$S_{3} = \{(x, y) \in \mathbb{R}^{2} : |y|_{2} \ge 1, |y|_{2} > |x|_{2}\}.$$

Show that all three sets are stable under translation by any $(x, y) \in S_1$.

- (b) Prove that no line in \mathbb{R}^2 intersects all three subsets. (Hint: reduce to the case where the line passes through (0, 0).)
- (c) Suppose we have a dissection of the square $[0, 1] \times [0, 1]$ into triangles. Show that there exists a triangle with one vertex in each of S_1, S_2, S_3 . (Hint: assuming there is no such triangle, count segments with one vertex in S_1 and the other in S_2 and find a parity violation. A result of a similar nature is *Sperner's lemma*; see Zulip for more discussion.)
- (d) Deduce that if there are m triangles in the dissection and they all have area 1/m, then $|1/m|_2 < 1$ and therefore m is even.