Math 204A (Number Theory), UC San Diego, fall 2022 Problem Set 3 – due Thursday, October 20, 2022

Submit at most five of the listed problems.

- 1. Let R be a Dedekind domain. Prove that the following statements are equivalent.
 - (a) The ring R is a principal ideal domain.
 - (b) The ring R is a unique factorization domain.
 - (c) The class group of R is trivial.

(Hint: for (b) \Longrightarrow (c), it is enough to show that every prime ideal \mathfrak{p} is principal. First show that \mathfrak{p} contains an irreducible element α , then show that α generates a nonzero prime ideal.)

- 2. Let L/K be a nontrivial extension of number fields such that $[\mathfrak{o}_L^{\times} : \mathfrak{o}_K^{\times}]$ is finite. Prove that K is a totally real field (i.e., all of its archimedean embeddings are real) and $L = \mathbb{Q}(\sqrt{\alpha})$ for some $\alpha \in K$ such that $\tau(\alpha) < 0$ for every embedding $\tau : K \to \mathbb{R}$. Such a field L is called a CM field (for "complex multiplication").
- 3. Let K be a number field of degree n with signature (r_1, r_2) . We derive Minkowski's improved estimate for the minimum norm of an ideal in an ideal class of K.
 - (a) Prove that for any t > 0, the region

$$X = \{(z_{\tau}) \in K_{\mathbb{R}} : \sum_{\tau} |z_{\tau}| < t\}$$

has volume $2^{r_1}\pi^{r_2}\frac{t^n}{n!}$. (Hint: it may be easiest to set this up as a multiple integral, using polar coordinates for each complex embedding.)

(b) Show that any nonzero ideal I of \mathfrak{o}_K contains a nonzero element α satisfying

$$\left|\operatorname{Norm}_{K/\mathbb{Q}}(\alpha)\right| \leq \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^{r_2} \sqrt{|d_K|}[\mathfrak{o}_K:I].$$

(Hint: apply Minkowski's lattice point theorem to the region X from (a), then use the arithmetic-geometric mean inequality.)

- (c) Deduce (as in lecture) that every ideal class of K is represented by some integral ideal of norm at most $\frac{n!}{n^n} \left(\frac{4}{\pi}\right)^{r_2} \sqrt{|d_K|}$.
- 4. Let K be a number field for which $|d_K| = 1$. Prove that $K = \mathbb{Q}$. (Hint: show that $\frac{n!}{n^n} \left(\frac{4}{\pi}\right)^n < 1$ for n > 1, then apply the previous exercise.)
- 5. Use the improved Minkowski estimate to show that $\mathbb{Q}(\sqrt{11})$ has class number 1.

- 6. Let K be the number field $\mathbb{Q}[x]/(x^3-x^2+x+1)$.
 - (a) Find the home page of K in the LMFDB.
 - (b) Report what the LMFDB says about the signature of K and the structure of the group \mathfrak{o}_K^{\times} (including generators).
 - (c) Prove that this answer is correct.
- 7. Repeat part (a) and (b) of the previous exercise for the fields

$$\mathbb{Q}(2^{1/3}), \qquad \mathbb{Q}(\sqrt{3}, \sqrt{5}), \qquad \mathbb{Q}(\zeta_5).$$

(Hint: it may help to filter by signature and/or Galois group.)

- 8. (a) Use SageMath to list all the imaginary quadratic fields with discriminant in [0, 10⁴] with class number 1. The fact that there are no others of *any* discriminant is a deep theorem (the resolution of the Gauss class number one problem by Baker–Heegner–Stark).
 - (b) Compute the fraction of real quadratic fields with discriminant in $[-10^4, 0]$ with class number 1. Note that this is quite far from zero!
 - (c) Make a plot comparing two sets of data: the class number of an imaginary quadratic field $\mathbb{Q}(\sqrt{-D})$ as a function of D, and the class number times the logarithm of a fundamental unit of a real quadratic field $\mathbb{Q}(\sqrt{D})$ as a function of D. These should look much more similar.