Math 204A (Number Theory), UC San Diego, fall 2022 Problem Set 4 – due Thursday, October 27, 2022

Submit at most five of the listed problems.

- 1. Neukirch, exercise I.7.6: Let K be a totally real number field, let $X := \operatorname{Hom}(K, \mathbb{R})$, and let T be a nonempty proper subset of X. Then there exists a unit $\epsilon \in \mathfrak{o}_K^{\times}$ satisfying $0 < \tau(\epsilon) < 1$ for all $\tau \in T$ and $\tau(\epsilon) > 1$ for all $\tau \notin T$.
- 2. Neukirch, exercise I.8.4: Show that a prime ideal \mathfrak{p} of a number field K is totally split in a separable extension L/K if and only if it is totally split in the Galois closure N/K of L/K.
- 3. Neukirch, exercise I.8.3: Show that if a prime ideal \mathfrak{p} of a number field K is totally split in two separable extensions L_1/K and L_2/K , then it is also totally split in the composite extension. (You may use the previous exercise if you wish.)
- 4. Let p be an odd prime. For this problem, you may assume that the ring of integers in $\mathbb{Q}(\zeta_p)$ is $\mathbb{Z}[\zeta_p]$ (this will be proved in class at some point).
 - (a) Show that $\mathbb{Z}[\zeta_p + \zeta_p^{-1}]^{\times}$ is a subgroup of finite index of $\mathbb{Z}[\zeta_p]^{\times}$.
 - (b) Let c be the nontrivial automorphism of $\mathbb{Q}(\zeta_p)$ fixing $\mathbb{Q}(\zeta_p + \zeta_p^{-1})$. Prove that for any $\alpha \in \mathbb{Z}[\zeta_p]^{\times}$, α/α^c is a root of unity.
 - (c) Prove that the quotient $\mathbb{Z}[\zeta_p]^{\times}/\mathbb{Z}[\zeta_p+\zeta_p^{-1}]^{\times}$ is generated by ζ_p . (Hint: first use (b) to show that if $\alpha\in\mathbb{Z}[\zeta_p]^{\times}$, then there exists $j\in\{0,\ldots,p-1\}$ such that $(\zeta_p^j\alpha)^2\in\mathbb{Z}[\zeta_p+\zeta_p^{-1}]^{\times}$.)
- 5. Put $K = \mathbb{Q}(\zeta_7)$.
 - (a) Show by "pure thought" that K contains a subfield of degree 2 over \mathbb{Q} and a subfield of degree 3 over \mathbb{Q} .
 - (b) Describe each of these fields as $\mathbb{Q}[\alpha]/(P(\alpha))$ for some irreducible polynomial $P(x) \in \mathbb{Q}[x]$.
- 6. Let K be the number field $\mathbb{Q}[\alpha]/(\alpha^3-\alpha-1)$. Write some code in SageMath (or another system) to show that there is no modulus $m \leq 100$ for which the splitting of a prime p in K is determined by the reduction of p modulo m. (That is, for each m, you should find two primes with the same remainder modulo m but different splitting behavior.)
- 7. Let K be the number field $\mathbb{Q}[\alpha]/(\alpha^3 \alpha 1)$. Let L be the Galois closure of K/\mathbb{Q} . Check that L contains $\mathbb{Q}(\sqrt{-23})$ and that no prime of $\mathbb{Q}(\sqrt{-23})$ ramifies in L. (You may ask SageMath to compute \mathfrak{o}_L .)
- 8. Using Dirichlet's theorem on primes in arithmetic progressions, prove that every finite abelian group occurs as $Gal(K/\mathbb{Q})$ for some number field K.