Math 204A (Number Theory), UC San Diego, fall 2022 Problem Set 6 – due Thursday, November 10, 2022

Submit at most five of the listed problems.

- 1. Let L/K be an extension of number fields with Galois closure M and Galois group G. Put $H = \operatorname{Gal}(M/L)$. Assume that every element of G generates the decomposition group of some unramified prime of M (this is a corollary of the Chebotarev density theorem). Show that if every prime of \mathfrak{o}_K which does not ramify in M has the property that all of the primes above it in L have the *same* inertial degree, then L/K is Galois. (Hint: use the fact that a cyclic group has only one subgroup of any given order.)
- 2. Let K/\mathbb{Q} be a non-Galois cubic extension with squarefree discriminant, let L be the Galois closure of K, and let M be the quadratic subextension of L. Prove that no prime of M ramifies in L. (Optional: do the same for K/\mathbb{Q} of degree n with Galois group S_n .)
- 3. Let L/K be an extension of number fields with Galois closure M. Let $\mathfrak p$ be a prime of K.
 - (a) Prove that if \mathfrak{p} is unramified in L, then it is unramified in M also.
 - (b) Prove that if \mathfrak{p} is unramified and totally split in L, then it is totally split in M also.
- 4. Let m be an integer which is not a perfect square, and put $K = \mathbb{Q}(m^{1/4})$. Let L be the Galois closure of K/\mathbb{Q} . Let p be an odd prime not dividing m and let \mathfrak{q} be a prime above p in L. For each possible value for the decomposition group $G_{\mathfrak{q}}$, describe the corresponding splitting of p in K.
- 5. (a) Prove that $\mathbb{Z}[x]/(x-p) \cong \mathbb{Z}_p$. This is done in Neukirch, but try it yourself first.
 - (b) Prove that $\mathbb{Z}((x))/(x-p) \cong \mathbb{Q}_p$.
- 6. (a) If p is a prime and m is a positive integer, then

$$\varprojlim_{n} \mathbb{Z}/(p^{m})^{n}\mathbb{Z} \cong \mathbb{Z}_{p}.$$

(b) If m_1, m_2 are coprime integers greater than 1, then

$$\varprojlim_{n} \mathbb{Z}/(m_{1}m_{2})^{n}\mathbb{Z} \cong \varprojlim_{n} \mathbb{Z}/m_{1}^{n}\mathbb{Z} \times \varprojlim_{n} \mathbb{Z}/m_{2}^{n}\mathbb{Z}.$$

For example, this means that the "ring of 10-adic integers" is not an integral domain.

7. Prove that an element x of $\mathbb{Z}_2 \setminus 2\mathbb{Z}_2$ is a perfect square if and only if $x \equiv 1 \pmod{8}$.

- 8. (a) Prove that the field \mathbb{R} has no automorphisms other than the identity even if we do not require them to be continuous. (Hint: use the fact that the squares in \mathbb{R} are precisely the nonnegative elements.)
 - (b) Let p > 2 be a prime. Show that every element of \mathbb{Z}_p congruent to 1 modulo p^2 has a p-th root, using the binomial series.
 - (c) Optional: Prove that the field \mathbb{Q}_p has no automorphisms other than the identity even if we *do not* require them to be continuous. (See Zulip for hints.)