Math 204A (Number Theory), UC San Diego, fall 2022 Problem Set 7 – due Thursday, November 17, 2022

Submit at most five of the listed problems.

- 1. (a) Prove that for any finite extension K of \mathbb{Q}_p , the group of roots of unity in K is finite. (Hint: separate into the p-part and the prime-to-p part.)
 - (b) Compute this group for $K = \mathbb{Q}_p$.
- 2. (a) Compute the group $\mathbb{Q}_2^{\times}/(\mathbb{Q}_2^{\times})^2$.
 - (b) Use this to show that every quadratic extension of \mathbb{Q}_2 is contained in $\mathbb{Q}_2(\zeta_{24})$. This is an important partial result towards the *local Kronecker-Weber theorem*, an initial step in class field theory.
- 3. Let K be a field complete with respect to a nonarchimedean absolute value. Let $P(x) \in \mathfrak{o}_K[x]$ be a polynomial and suppose $\alpha \in \mathfrak{o}_K$ satisfies

$$|P(\alpha)| < |P'(\alpha)|^2.$$

Show that the Newton-Raphson iteration

$$\alpha_0 = \alpha, \qquad \alpha_{n+1} = \alpha_n - \frac{P(\alpha_n)}{P'(\alpha_n)}$$

converges to a root of P in K.

- 4. Neukirch, exercise II.5.5 (corrected): Let K be a finite extension of \mathbb{Q}_p . Prove that as n varies over positive integers, the subgroup $(\mathfrak{o}_K^{\times})^n$ of K^{\times} form a basis of neigborhoods of 1 in K.
- 5. Let K be a field equipped with (but not necessarily complete with respect to) a nonarchimedean absolute value. Let L be any field containing K (not necessarily a finite extension). Prove that there exists at least one extension of the absolute value on K to an absolute value on L. (Hint: use Zorn's lemma to reduce to the case where $L = K(\alpha)$ where α is either algebraic or transcendental over K.)
- 6. In this exercise, we give Monsky's amazing proof of the following theorem: a square in the Euclidean plane cannot be dissected into an *odd* number of triangles, all of the same area.
 - (a) Use the previous exercise to construct a nonarchimedean absolute value $|\cdot|_2$ on \mathbb{R} such that $|2|_2 < 1$, then show that the partition of \mathbb{R}^2 into the subsets

$$S_1 = \{(x, y) \in \mathbb{R}^2 : |x|_2 < 1, |y|_2 < 1\}$$

$$S_2 = \{(x, y) \in \mathbb{R}^2 : |x|_2 \ge 1, |x|_2 \ge |y|_2\}$$

$$S_3 = \{(x, y) \in \mathbb{R}^2 : |y|_2 \ge 1, |y|_2 > |x|_2\}$$

is stable under translation by any $(x, y) \in S_1$.

- (b) Prove that no line in \mathbb{R}^2 intersects all three subsets. (Hint: reduce to the case where the line passes through (0,0).)
- (c) Suppose we have a dissection of the square $[0,1] \times [0,1]$ into triangles. Show that there exists a triangle with one vertex in each of S_1, S_2, S_3 . (Hint: assuming there is no such triangle, count segments with one vertex in S_1 and the other in S_2 and find a parity violation. This is closely related to *Sperner's lemma* in combinatorial topology.)
- (d) Deduce that if there are m triangles in the dissection and they all have area 1/m, then $|1/m|_2 > 1$ and therefore m is even.
- 7. Neukirch, exercise II.6.1: Let K be a field complete with respect to a nonarchimedean absolute value and fix an algebraic closure \overline{K} of K. Let $P(x) \in K[x]$ be a monic polynomial of degree n with roots $\alpha_1, \ldots, \alpha_n \in \overline{K}$ (counted with multiplicity). Prove that for every $\epsilon > 0$, there exists $\delta > 0$ such that if Q(x) is another monic polynomial of degree n with $|P Q| < \delta$ (for the Gauss norm), then the roots of Q in \overline{K} can be labeled as β_1, \ldots, β_n in such a way that

$$|\alpha_i - \beta_i| < \epsilon$$
 $(i = 1, \dots, n).$

That is, "the roots of a polynomial over K vary continuously in the coefficients." (Hint: look at the Newton polygon of $Q(x + \alpha_i)$.)

8. Neukirch, exercise II.6.2 (Krasner's lemma): Let K be a field complete with respect to a nonarchimedean absolute value and fix an algebraic closure \overline{K} of K. Let $\alpha \in \overline{K}$ be separable over K and let $\alpha_1, \ldots, \alpha_n$ be its conjugates over K. If $\beta \in \overline{K}$ is such that

$$|\alpha - \beta| < |\alpha - \alpha_i| \qquad (i = 2, \dots, n),$$

then $K(\alpha) \subseteq K(\beta)$.