
Math 203B (Number Theory), UCSD, winter 2015
Notes on completions of fields

Here is a more detailed version of the discussion about completions of fields from the first
lecture.

Let F be a field. An absolutQe value on F is a function |•| : F → [0,+∞) with the
following properties.

(a) For x ∈ F , |x| = 0 if and only if x = 0.

(b) For x, y ∈ F , |xy| = |x||y|.

(c) For x, y ∈ F , |x+ y| ≤ |x|+ |y|. If in fact we have |x+ y| ≤ max{|x|, |y|}, we say that
|•| is a nonarchimedean absolute value.

From now on, assume that F comes equipped with a specified absolute value |•|. As
usual, we say that a sequence x1, x2, . . . in F is Cauchy if for every ε > 0, there exists
N ≥ 0 such that for all integers m,n ≥ N , we have |xm − xn| < ε. We record the following
observations.

• Any constant sequence is Cauchy.

• Any convergent sequence, and in particular any null sequence (sequence convergent to
0) is Cauchy.

• Any permutation of a Cauchy sequence is Cauchy.

• Any Cauchy sequence is bounded.

• The termwise sum of two Cauchy sequences is Cauchy (by the triangle inequality).

• The termwise product of two Cauchy sequences is Cauchy: if (x1, x2, . . . ) and (y1, y2, . . . )
are the two sequences, we see that (x1y1, x2y2, . . . ) is Cauchy by writing

xmym − xnyn = xm(ym − yn) + yn(xm − xn)

and using the fact that |xm|, |yn| are uniformly bounded. Consequently, the set of
Cauchy sequences forms a ring R. By similar reasoning, the termwise product of a
bounded sequence and a null sequence is null, so the null sequences form an ideal I in
R.

We define the completion F̂ of F , as a ring, as the quotient R/I. Note that the cosets
of I in R can be identified with the equivalence classes for the relation ∼ defined in class:
(x1, x2, . . . ) ∼ (y1, y2, . . . ) if the sequence (x1, y1, x2, y2, . . . ) is also Cauchy.

We claim that F̂ is not just a ring but a field. To see this, let (x1, x2, . . . ) be any sequence
which is not null. By definition, that means that for some ε > 0, there are infinitely many
indices n for which |xn| > ε. On the other hand, for some N ≥ 0, for all m,n ≥ N , we
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have |xm − xn| < ε/2. Consequently, we must have |xm| > ε/2 for all m ≥ N , so none of
these xm is zero. Let (y1, y2, . . . ) be any sequence with yn = 1/xn for n ≥ N (and arbitrary
values for n < N). For any δ > 0, we can choose N ′ ≥ N such that for m,n ≥ N , we have
|xm − xn| < δε2/4; then

|ym − yn| =
∣∣∣∣xn − xmxmxn

∣∣∣∣ < 4

ε2
|xn − xm| < δ,

so (y1, y2, . . . ) is a Cauchy sequence whose image in F̂ is a multiplicative inverse of (x1, x2, . . . ).
We define the function |•| on R by taking |(x1, x2, . . . )| = limn→∞ |xn| (which exists by

the triangle inequality). One checks easily that this function factors through F̂ and defines

an absolute value, and that the map F → F̂ taking x to (x, x, . . . ) is isometric. Moreover, F̂
is complete: if x1 = (x11, x12, . . . ), x2 = (x21, x22, . . . ), . . . is a sequence in R representing a

Cauchy sequence in F̂ , we can construct a limit of this sequence by diagonalization. (More
precisely, for each i, choose a positive integer Ni such that |xim − xin| ≤ 2−i for m,n ≥ Ni;
then one checks that (x1N1 , x2N2 , . . . ) belongs to R and represents a limit of the original
sequence.)

Now suppose I have constructed some other field G which I would like to show is isomor-
phic to F̂ . It would suffice to produce the following data.

1. An absolute value |•| on G under which it is complete.

2. A homomorphism F → G of fields (necessarily injective!) which is isometric and whose
image is dense.

Namely, given this data, any Cauchy sequence in F maps to a Cauchy sequence in G, which
has a limit; we thus get a well-defined homomorphism F̂ → G. This is injective because it’s
a homomorphism of fields; it’s surjective because F is dense in G, so we can represent any
element of G as a limit of a Cauchy sequence in F .
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