Math 203B (Number Theory), UCSD, winter 2015
Notes on Hensel’s lemma

Let K be a field complete with respect to a (not necessarily discrete) nonarchimedean
absolute value. Let ox denote the valuation ring of K. Let px denote the maximal ideal of
0x. Let k denote the residue field of og.

In class, we proved Hensel’s lemma in the following form (following Neukirch I1.4.6).

Theorem 1. For any polynomial f(T) € ox[T] which is primitive (its reduction f(T) € k[T]
is nonzero) and any factorization

J(T) =g(T)K(T)

in k[T such that g, h are coprime, there is a unique lift of this factorization to a factorization

such that deg(g) = deg(q).
This is most commonly applied as follows.

Corollary 2. Let f(T) € ox[T)] be a polynomial. Then any simple root of f(T) in k lifts
uniquely to a root of f(T) in ok.

Proof. Apply Theorem 1 with § = T — T where T is a simple root of f. O

It turns out that one can recover Theorem 1 from Corollary 2 using some trickery involving
symmetric polynomials, but we will not need to do this. Instead, we describe a stronger
version of Corollary 2.

Theorem 3. Suppose f(T) € ox[T] and ty € o satisfy

|f(to)] < |f/(to)[ -

Then there exists a unique root t of f satisfying

[t —to] < [f'(to)],
and this root actually satisfies
RN

Note that we recover Corollary 2 by taking ¢, € ok to be a lift of a simple root of f; in
this case, |f(to)| < 1 while |f'(to)] = 1.
To prove Theorem 3, we use the Banach contraction mapping theorem.



Lemma 4. Let X be a complete metric space with distance function d. Let g : X — X be a
map such that for some € € [0,1), we have

d(g(x), 9(y)) < ed(z,y)  (z,y € X). (1)
Then there ezists a unique v € X such that g(x) = .

Proof. We first check uniqueness. If z,y € X satisfy g(z) = z, g(y) = y, then (1) implies

d(z,y) = d(g(z), g(y)) < ed(z,y),

so d(z,y) = 0 and hence =z = y.
We next check existence. Choose any zy € X and define

x1 = g(x0), xe = g(x1), . ...

By (1) again,
d(xn+2a xn+1) < €d<xn+1> xn)a

from which it follows immediately that x, z1, ... is a Cauchy sequence. Since X is complete,
this Cauchy sequence admits a unique limit x. By (1) again, g is continuous for the metric
topology, so x1,Za, ... is a Cauchy sequence with limit g(z). By the uniqueness of limits in
a metric topology, this forces g(x) = z, proving existence of a fixed point. ]

Proof of Theorem 3. Pick any real number c satisfying

| f(to)]
|f'(to)]

Let X be the set of t € K satisfying [t — to| < ¢, equipped with the metric topology. Since
f has coefficients in 0, so does f’; consequently,

[F/(8) = [t <[t —to] e <[f'(t)] (¢t €X),

so |f'(t)] = |f'(to)] # 0 for all t € X. We may thus define the function g : X — K by the
formula
f(t)

gt)=1t—
D=t T
Since f has coefficients in 0g, from the definitions of ¢ and X we have

[F(0)] < max{|f(to)]. |/ (to)l[t = tol, [t =t} < el f'(to)]  (t € X).

Since we already computed that | f'(¢)| = |f'(to)|, this implies

fOI<cf' M (teX),

so |g(t) —t| < cand so |g(t) — to| < c¢. In other words, g maps X into itself.

< e <[f'(to)]-
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Now choose t,u € X and expand f(u), f'(u) as polynomials in u — ¢:

flu)=f)+ ) (u—1t)+---
Fw) =B+ Ow—1t)+-

We then compute that as a formal (and also convergent) power series in u — t,

g<u>—g<t>:%’g§“<u—t>+---,

from which we see that c

|f"(to)
We may thus apply Lemma 4 to deduce that there is a unique ¢ € X such that g(t) = t, and
hence f(t) = 0.

This proves that there is a unique root ¢ of f satisfying |t — ty] < ¢. On one hand, since
we could have taken ¢ = |f(to)|/|f (to)|, we deduce that

| f(to)]

£ — 1] < L

' (to)|
On the other hand, since ¢ can be taken arbitrarily close to |f’(to)|, we deduce that ¢ is the
unique root of f for which |t — | < |f'(to)|. (Note that Lemma 4 does not directly apply

to the set of ¢t € K for which |t — to] < |f'(to)|, because the value of € cannot be chosen
uniformly.)

l9(u) = g(t)] < ju—1|.

]



