The local invariant map; Tate's theorem

HW 13 is posted. It is due Thursday, February 11.
Reminder: state of the H^2 computation

Last time: conjecture $H^2(L/K) = H^2(L/K)$,

where $L/K / Q_p$ are finite extensions,

and hence: $H^1_{rig}(L/K)$.

- if L/K unramified, OK.
- if L/K cyclic, checked OK.
- if L/K general (=) solvable, checked

by $\mathbf{H}^1_{f,rig}$-restriction.
Comparison with an unramified extension

Let M/K be the unramified extension of degree L. Then $\operatorname{cyc} (\text{unram}) = H^2 (M/K)$. If χ is trivial, then $\operatorname{cyc} (\text{unram}) = 0$. The exact sequence:

$$0 \rightarrow H^2 (L/K) \rightarrow H^2 (M/L) \rightarrow 0.$$

If dimension 1, then the generator is $H^2 (M/L)$.
Computation via H^0_T

Let L/K be a normal integral extension with L/K

$\text{Gal}(L/K) \cong \text{Gal}(M/L)$

$c = c(L/k)$

$f = f(L/K)$

\[
\begin{array}{c}
\text{H}^2(M/K) \to \text{H}^2(L/K) \\
\text{H}^0_T(M/K) \to \text{H}^0_T(L/K)
\end{array}
\]

\[
\begin{array}{c}
\text{H}^0_T(M/K) \to \text{H}^0_T(L/K) \\
\text{H}^2(M/K) \to \text{H}^2(L/K)
\end{array}
\]

$K^* / N_{M/K} M^* \to \mathbb{Z}$

cycl_L is a cycle by tr
Computation via H^0_T

For each finite Galois extension L/K, we have $\mathcal{H}^2(L/K) = \text{cyc}$ of order $|L/K|$.
And now... statement of Tate's theorem

Let G be a finite group. Let M be a G-module.

Suppose $\forall H \leq G$ subgroups, $\text{Hom}(H, M) = 0$.

Then, there exist isomorphisms

$$\mu_i^*(G, \mathbb{Z}) \overset{\sim}{\longrightarrow} H_1^i(G, M)$$

which are determined by a choice of surjective

$$\text{Hom}(G, M)$$

Take $i = 2$:

$$\mu_2^*(G, \mathbb{Z}) \cong H_2^1(G, \mathbb{Z})$$

$$G^a_b = \text{Hom}(G, \mathbb{Z}) = K^*/\text{Ann}_{\mathbb{Z}} K^*$$
Proof of Tate's theorem: a key exact sequence

Let \mathbb{G} be a group and M a \mathbb{G}-module represented by a cyclic module $\phi: \mathbb{G} \to M$

Define an \mathbb{G}-module $M(\phi)$ (lifting module) as follows:

- $M(\phi)$ is a \mathbb{G}-module for which ϕ lifts uniquely.
- It has an exact sequence

$$0 \to M \to M(\phi) \to \mathbb{R}(\phi) \to \mathbb{R} \to 0$$

where

$$H^1_t(\mathbb{G}, \mathbb{Z}) \cong H^1_t(\mathbb{G}, \mathbb{Z}) \Rightarrow H^1_t(\mathbb{G}, M)$$
Definition of the splitting module

\[M(\mathcal{D}) = M \otimes \bigoplus_{g} \mathbb{Z} \]
\(g \in G \sim \{e\} \)

with \(\mu = \mu_{\alpha} \)

\[x_{g} = x_{rg} - x_{g} + \phi(e_{g}, h_{g}) \]

where \(x_{e} = \phi(e_{e}, e) \).

Properties of \(\phi \) imply that this gives a \(G \)-action:
\[\phi(g_{1}, g_{2}, g_{3}) = \phi(g_{1} g_{2}, g_{3}) \]
\[\phi(1, g_{1}, g_{2}, g_{3}) - \phi(g_{1}, g_{2}, g_{3}) = \phi(g_{1} g_{2}, g_{3}) - \phi(1, g_{2}, g_{3}) = 0. \]

By construction, \(x_{e} \) is mapped to zero in \(H^{2}(e, M(\mathcal{D})) \):
\[\phi(e, e) = x_{g}. \]
Towards acyclicity of the splitting module

\[0 \to M \to M(\alpha) \to I_\alpha \to 0 \]

with \(x_5 \to (y) - 1 \)

Let the long exact sequence:

\[0 \to H^1(\mathcal{M}) \to H^1(\mathcal{M} \cap \mathcal{P}) \to H^1(\mathcal{M}, \mathcal{P}) \to H^2(\mathcal{M}, \mathcal{P}) \to 0 \]

Be divided by \(\alpha \) in 0.

\[\left[\begin{array}{c}
-\gamma_j(1, \beta) \\
\gamma_j(1, \beta) \\
\gamma_1(1, \beta)
\end{array} \right] \]

\[= 0 \]

\[\text{fund H}_2 \text{H}_2 \text{H}_2 \text{H}_2 \]
Lemma: a shortcut to acyclicity (positive indices)

\[\text{Let } G \text{ be a finite group } \]
\[M = \langle b \rangle \text{ mod } 2 \quad \text{ for } i \leq s \text{ and } \]
\[\suppose \ M'(1, M) = 0 \forall i \quad \text{ all } i \leq l, \]
\[\text{Then } \mu_i(G, M) = 0 \forall i. \]

\[\suppose \text{ for the moment that } \epsilon > 0 \text{ be small. } \]
\[\text{Suppose in } \mathcal{H}, \text{ rich MRC s.t. } \| \epsilon \| \text{ be small. } \]
\[\text{Given } \mu_i(G, M) = 0. \text{ In this hypothesis (i.e., } \epsilon = 0 \)
\[\Rightarrow \mu_i(G, M) \quad \text{ by definition. } \]
\[\Rightarrow \mu_i(G, M) \quad \text{ (6/17, } \text{ etc. } \mu_i(G, M) \Rightarrow 17, 1/17, M) \]
\[\text{which then } G \text{ must satisfies hypotheses } \]
\[\Rightarrow \text{ with } G \text{ cyclic (i.e., } \epsilon > 0 \text{). } \]
Lemma: a shortcut to acyclicity (negative indices)

For negative indices, the dimension of \(H^i \) is zero for \(i > 0 \).

\[
0 \to \mathbb{N} \to \prod_{i \leq 0} H^i \to 0
\]

\[
H^i(M) \cong H^i(W) \quad (m = 0, -1, \ldots)
\]
Lemma: a shortcut to acyclicity (nonsolvable case)

If G not solvable, let p be any prime $G_p = P
solvable$. Subgroup $(solvable)$

Claim:

$H(G, M) \rightarrow H(G_p, M) \rightarrow H(G_p, M)$ injective on nonsolvable part

Proof: Let $S = C_G(b_p)$ be some subgroup S of G.

So S contains all of $H(G, M)$ which is closed for all p (He says known to be torsion).