The reciprocity law in abstract class field theory

PS 14 has been posted. It is due Thursday, February 18.

Warning: I am planning to reorder a couple of sections in the notes. In particular, the section we will cover after this (ramification filtrations) will end up before abstract CFT, which will be moved into a new chapter.
Reminder: the setup of abstract CFT

\[K = \text{field} \quad \overline{K} = \text{any } \frac{1}{16} \text{br. c. extension} \]

\[\mathcal{C} = \text{Gal} (K/k) \]

\[A = \text{modulo } \Lambda \text{Le} \quad A_K = A_{\text{Gal}(\overline{K}/k)} \]

\[\phi: \text{Gal}(\overline{K}/k) \rightarrow \mathbb{Z} \text{ with unique } \phi \]

\[\rightarrow E_{\overline{K}/K}, \text{ flux } \]

\[V: A_K \rightarrow \mathbb{Z} \]

\[\hat{V}(\text{Norm}_{K/k} A_K) = f_{K/k} \quad \hat{V}(A_K) \quad \text{not necessary on 0} \]

\[\sum_{i=0}^{\infty} f_l (\mathcal{C}_{(l, k)}, A_{l}) = 0 \quad i = 0 \quad \sum_{i=1}^{\infty} f_l (\mathcal{C}_{(l, k)}, A_{l}) = 1\]

\[K, L \text{ finite extensions of } K \text{ with } \mathcal{C} \]
The reciprocity map: first formula

Let \(M = \text{semisimp of } g \in \mathcal{G}L(\mathbb{C}^{n-1}/K) \) s.t. \(\delta(g) \) is \(L. \frac{1}{2} \text{F}(\text{reg}(\mathcal{H})) \) c.p. \(v_{\mathcal{H}} \).

Let \(r : 1 \rightarrow \mathbb{A}^+ \to \text{Norm}(1)_K \) be

\(\text{Let } \mathcal{M} = F_{\infty}(g) \)

\(\text{Note: replacing } \tilde{\mathcal{H}} \text{ changes this by a } \mathcal{H} \text{-isomorphism of } \mathbb{A}_L \to \mathbb{A}_L \)
The reciprocity map: second formula

\[\Lambda_K(\phi) = \frac{1}{\phi^n - 1} \]

Given \(\phi \in \mathbb{G}_M \),

\[\text{Norm}_{\pi/K}(x) = \text{Norm}_{\pi/K}(x \times \phi \times \ldots \times \phi^{n-1}) \]

(i.e., \(x = \pi m \))

Let \(U = \mathbb{M}_K \cup \mathbb{U}_K \cup \mathbb{M}_M \cup \mathbb{U}_M \),

\[\text{Norm}_{\pi/K} \times \text{Norm}_{\pi/M} = \text{Norm}_{\pi/K} \circ \text{Norm}_{\pi/M} \]

\(U/K \) unram. of degree \(n \), \(SU \) for \(y \in A_K \), \(\text{Norm}_{\pi/K}(y) = y \)

Meanwhile, \(\text{Norm}_{\pi/M} \) on \(A_M \) is restriction of \(\text{Norm}_{\pi/K} \).

\[\text{Norm}_{\pi/K} \cup \text{Norm}_{\pi/M} \]
Multiplicativity of the reciprocity map

Let \(r : H \to \operatorname{Aut}(\mathcal{V}_K) \). We have

\[r_1(s_1) \cdot r_2(s_2) = r_3(s_3), \]

with \(s_i \in S_i \). Let \(\mathcal{V}_K \) be a representation.

First, we check that

\[\nu_K(s_i) : f(M_i \mid K) \mu_{M_i}(s_i), \]

but to show \(s_1 s_2 / s_3 \in \operatorname{Num}_{\mathcal{V}_K} A_L \) for all \(i \), it's in \(\mathcal{V}_K \).

Define \(s_i = \nu_{M_i} L_{\mathcal{V}_K} (s_i) \), where \(s_i \in S_i \).

So, \(s_i \) is the image of \(s_i \) under \(\nu_{M_i} L_{\mathcal{V}_K} \) for some \(N_i \) in the image.

Thus, \(\mathcal{V}_K \) is a representation.

For some \(N_i \) in the image, we have

\[\mu_{M_i}(s_i) \]
Cohomology of the abstract units

Let $M/L/K$ be finite extensions, with M/K abelian and L/K unramified. Then:

The $U_K \cap \text{Norm}_{M/L} U_L = \text{Norm}_{M/K} U_K$.

(If $M = L$, follows from class field theory.)

\[H^1_{\text{fl}}(\mathbb{G}_m, U_L) = 0 \quad \Rightarrow \quad H^2_{\text{fl}}(\mathbb{G}_m, U_K) \cong H^0(L(1), \mathbb{Z}) \]

(If h_M were h_L instead of 1, this would be inflation-restriction.

\[H^0(\mathbb{G}_m, M) \cong N \otimes M \]

\[H^1_{\text{fl}}(L(1), M) = 0 \Rightarrow H^1_{\text{fl}}(L(1), N) \rightarrow H^1_{\text{fl}}(L(1), M) \rightarrow H^1_{\text{fl}}(L(1), N(1)) = \cdots \]
Reciprocity in the unramified case

\[\mathbb{E}_K \text{ Gal}(L/K) \to \mathbb{A}_K/\mathbb{G}_m \text{ at } \mathfrak{p} \]

Lemma: If \(L/K \) is abelian, then the \(\mathbb{A}_K \) is torsion.

and "torsion" \(\to \mathbb{A}_K \)

(real division)
Reciprocity in the cyclic ramified case

Let L/K be a cyclic Galois totally ramified extension.

Then $\text{Gal}(L/K) \cong \mathbb{Z}/m\mathbb{Z}$, where m is the ramification index.

If ϕ is a norm in L/K, let ϕ be the same order as ϕ held earlier.

Then $\text{Gal}(L^{ur}/K) = \text{Gal}(L/K) \times \text{Gal}(K^{ur}/K).$

Let $\tau = \phi \circ \text{res} \circ \phi^{-1}$.

$M = \text{fixed field of } \tau$ and $N = L_M$.

$N = \tau \sigma = L_M$.
Reciprocity in the cyclic ramified case

\[n - \frac{C_{\ell}}{w_{2}} \leq \text{min. pos. s.t. } \sqrt{\nu} (q) \in \mathbb{N}_{\nu} \cup \mathbb{A} \]

\[\Rightarrow n' \mid j. \]

Calculate: \[(q) = \text{Norm}_{\mathbb{L}/\mathbb{K}}(\nu_{1} \nu_{2} \nu_{3}) \]

\[\nu = (\nu_{1} \nu_{2} \nu_{3}) \quad \text{Norm}_{\mathbb{L}/\mathbb{K}}(\nu) = \text{Norm}_{\mathbb{L}/\mathbb{K}}(v) \quad \text{we write} \]

\[\nu = \frac{c_{2}}{c_{1}} \quad \text{by 1st class field axiom.} \]

\[\ldots \quad j | n. \]
Reciprocity in the general case

In general case

- for like abelian, induct down, cyclic case to tet

\[\text{L} : \text{Gal}(L/K) \rightarrow \text{Ab} / \text{Norm} \text{L/K} \]

- let some is soluble case be compatible 8.1

- handle nonsoluble case as in local theory