## **Cohomology of the idèles II: the "Second Inequality"**

HW 17 has been posted.

I have been continuing to reorganize the notes. The web site has been updated so that the references for each lecture remain accurate.



Reminder: the First Inequality \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) of # fields Classtellaxion: 17=(Gal(L/Kl,Ca) = [L;K) # M- (Gal(L/Kl,Ca) = 1 First 129 Walin; h(CL) = (LiK) -) # 1/2 (and (L/K) (4) = [L/K) CK/ NOJMEIK CL

Back to the language of ideals (14 H') = hom(1)we rept # M\_ ( Cak(L/K), CL) \( CL:K) to m a heral pool A ut places of K JK = 5 mp of tact, oral, chals of K coppose to m (LA JE) Pre = shipport principal known 1 ideas of run(x)

(-1 Pr) wher i & = 1 m-l m finite

(-1 Pr) where i & = 1 m-l m finite

(-1 Pr) where i & = 0 in lack real place in m  $C|^{m}(K)=J_{K}^{m}/p_{K}^{m}$ C/m(L)=JZ/Pm

The Second Inequality in the language of ideals In ATK MIN IN THE TOTALLY TO THE CHANGE (K)

Comma Cyphun (Lt) IX/pm Numlik Im 15 on 15 on ply hum for some of (really, cay string the S-to, le places that runing on on and sille of For ves, Normalk In = Ux ext open of this the inde whose of sopent continuents as well.

=) Seanting (=). [TE. PR Nova LIK JE] & CL:K)

A special case of Chebotarëv density lenna let LIK le - halis e serson of # Felds Theretotpine, dials of K which so lit completely It into the set of proves of absolute dynee I has
during I teach prime of the which splits completely
allowed to the CL: KD such primes of L.

A corollary For Has Agraged JK Containing

PK.

Other Hender present of princes in M has Dwihlet dusing PE & log L(S,X) DE EX(P) rom(x)-s... 

The Second Inequality for ideals H=PR Nomuk JR C JK Note: 11 continue ing pone tot opletely so 11 has Directed dus to attend 1/(L:K) 6 thy home, desty 11 either a to Tim: 11). =) (Jm: H) < CL:K) (hvc>>0, =[(k: Name/k 2))

H^1 and H^2  $L/K \sim y \text{ for loss } e \text{ Aenson}$   $COL M - (\text{ for } L/M), (L) \in CL:K).$  COL M'( Gal(L/K), (L) = 1)  $+M^2(\text{ fall}(L/M), (L) \in CL:K).$ 

## H^1 and H^2

PF FOR LIK (yelic rupo ne Fyto Seand Inequality

BOILIK Whooble, we in Michan-restriction to

LIK'IIK

O-> H' (Gol K'IKI CK) > H' (Gol (UN), (1) to H' (Gol (4K), (2)

LIK such; compare Gol (LIK) with Syla per b greep

the ofe hat H' (Gol (UK), (1), 17/6/1(UK), (4) non some l'ongerent.

Aside: the Hasse norm theorem me LIK cyclic extern it At Helds. The XEK\* 15 IN NOMLIKE If He ech placer of K, by wed v place of to XE November Lit. PE By Fust Head lag white 17 - (Galian) (1) - (1) => H\_T(G, (+) + H\_T(G, I2) 15 m, Tolore. Romak (where the some Hasse-hinkonste, theorem Prox Missails it Will abelian but not & clic

## The Grunwald Grunwald-Wang theorem

Counted: For Matteld, napos, tre XCK\* 15 15 (K\*) ~ MA Y places verk X((Kt)). Lieu examiles This is halse (was), b+ and be corrected (P.g. treit n. odd)

## The Albert-Brauer-Hasse-Noether theorem

Ihm For my # Held K,  $|\Lambda^{2}(\Delta_{x}((\overline{h}/K),\overline{K}^{*})) \longrightarrow (\overline{h}^{2}(\Delta_{x}((\overline{h}/K),\overline{K}^{*})))$ JE LIK M, He
13 muses mp -) M2 (mal(L/K), L\*/-) M2/mal(L/K, IL) On 4 4 4 1 ( lu, K), 2+)