The existence theorem

https://xkcd.com/1856/
Statement of the theorem \(K = \mathbb{F}_{\ell} \)

Then the finite abelian extensions of \(K \) are in bijection with open subgroups of finite index \(\text{Gal}(K^a/K) \) via \(L \mapsto \text{Norm}_L \mathbb{F}_{\ell} \subseteq L^a \).
How this interacts with (abstract) reciprocity

From reciprocity, it follows that

- for L/K abelian, $(\mathcal{C}_K : \text{Norm}_{L/K} \mathcal{C}_L) = \mathcal{C}_{L/K}$

and this super-

- For any given subgroup $U \subseteq \mathcal{C}_K$ open of finite index, if $U \supseteq \text{Norm}_{L/K} \mathcal{C}_L$ for some L,
 then $U = \text{Norm}_{L/K} \mathcal{C}_L$ for some L.
Reduction to a key special case

This means we assume \(\mathfrak{c}(K^{1/n}) = p \), prime

and (assume \(K = K_p \)).

\[K' = K(K_p), \quad U = \text{inversion map of } U\]

\(\mathfrak{c}(K', K') \downarrow_p \) corresponds to \(p \) and \(L' \), such that

\[\text{Norm}_{L/K'} C_{L'} = U, \quad \rightarrow \quad \text{Norm}_{L/K} C_{L'} = U. \]
A special open subset $\mathcal{V}_K = \mathcal{V} \cdot \mathcal{U}_K$.

Lemma 7. A finite set of points S contains all infinite planes, all plurigraus S, i.e., $-I_K = K^* I_K$ and preimage of U in I_K contains finiteness of $C^1(K)$, preimage of pt at U in \mathcal{U}_K.

$W_S = \prod (K^* V) \times \prod \mathcal{O}^*_K V V_S$ (open in I_K)
Local vs. global p-th powers

Lemma

For $w_s = \Pi_{v \in S} (K_v^*)^r \times \Pi_{v \in S} \mathcal{O}_{K_v}^*$, $w_s \cap K^*$

Proof

It follows that $P \subseteq (\mathcal{O}_{K}^*, s)$. Needs to show that $L = K(x^{1/p})$. By hypothesis, need to show $N_{M/K} c_L = c_K$.

If $w_s \cap K^*$ holds, then $w_s = W_s \cap K^*$.

Reference
A lemma on local p-th powers

For $p = p + 1$, place at K

\[
\left(\left(K_v^*: (K_v^*)^p \right) \right) = \frac{p^2}{\prod_{v \mid \mathfrak{p}} \mathfrak{p}}.
\]

Sketch of proof

Finite, pure to p,

$\prod_{v \mid \mathfrak{p}} \mathfrak{p}$

Conjugates p factors of p contribute nothing.

\[
K_v^* = \prod_{v \mid \mathfrak{p}} \mathfrak{p} \times \left(\mathfrak{p}^{\mathfrak{p} - 1}\right) \times U,
\]

Use $\lambda(v)$

\[
\sqrt{p}^v = p^2 \quad \text{and} \quad K_v^* \quad \text{divisible}
\]

Real $p = 2$

$\mathfrak{p}^\mathfrak{p} / (\mathfrak{p}^\mathfrak{p})^p = R^*/R^* = \mathbb{Z}/2\mathbb{Z}$
A candidate Kummer extension

\[L = K \left(w^{1/p} : w \in \Omega_k^1 \right) \]

\[(L : K) = p^s \]

\[\mathbb{F}_p \subseteq \mathbb{F}_{p^s} \]

From local reciprocity, \(N_{O_K^1 / L} c_L = \mathbb{F}_{p}/\mathbb{F}_p \)

We'll show this equality!

Thus we show

\[\left(\frac{K^*/\mathbb{F}_p, \mathbb{F}_{p^s}}{K^*/\mathbb{F}_p} \right) = \left(\mathcal{U}_K : N_{O_K^1 / L} \mathcal{U}_K \right) \]
Computation of the norm group of the candidate

\[1 \rightarrow O_{K^s}^* \rightarrow \frac{I_{K^s}}{\mathcal{O}_{K^s}^*} \rightarrow \frac{\mathcal{O}_{K^s}}{K^* W_{K^s}/K^s} \rightarrow 1 \]

\[\prod \frac{r^2}{\sqrt{q_s 16}} = r^{2g} \]

\[1 \rightarrow \mathcal{O}_{K^s}^* \rightarrow \mathcal{I}_{K^s} \rightarrow \mathcal{C}_{K^s} \rightarrow 1 \]
Applying this idea to the Second Inequality

To reduce the second inequality to the case of a cyclic extension $K \subset K'$ of prime degree p, where $K = \mathbb{Q}$.

$L = K(y^{\frac{1}{p}}), y \in K^*$

So L is contained in $K(u^{\frac{1}{p}}: u \in \mathbb{Q}_{K^*})$ for some large enough finite set of places (say, containing all infinite places and places above p) such that $K \cap K_{s} = \mathbb{Q}$.
Presentation of a Kummer extension

Lemma For $s = \# S$, I can choose a second, disjoint set T of $s-1$ finite places of K that are both \mathcal{O}^*-invariant. This implies $O^*_K S = \prod_{\mathfrak{p} \in T} (K_{\mathfrak{p}}^*)^n$ for some positive integer n.

This lemma is essential for understanding the structure of the Kummer extension. In particular, it allows us to express the action of O^*_K on S in terms of the action of $K_{\mathfrak{p}}^*$ on S.

Proof Consider the ring R of finite primes of K that do not split into \mathbb{N}_p. Let \mathfrak{p} be a prime such that \mathfrak{p} does not split in K.
Local p-th powers revisited

In settings: \[W_{s,t} = \left(\prod (K^*)^P \right) \times \prod (K^*) \times \prod \langle \mathcal{O}_K \rangle \]

\[\ker \mathcal{K}^* \cap W_{s,t} = (\mathcal{O}_K^*)^P \]

for $m = K(y, \mathcal{O}_K)$

Let:

\[\mathcal{N}_{\text{numm}/K} \mathcal{I}_{m, su} \neq \mathcal{I}_{K, su} \]

\[\omega^+ \]

\[\mathcal{N}_{\text{numm}/K} c_L = c_K \]
A bound on the norm subgroup

\[\begin{aligned}
1 & \rightarrow \mathcal{O}_K \mathcal{S}_U \mathcal{T} \\
\mathcal{O}_K \mathcal{S}_U \mathcal{T} & \rightarrow I \mathcal{S}_U \\
I \mathcal{S}_U & \rightarrow C_K \\
C_K & \rightarrow \mathcal{K}/\mathcal{K}_1 \mathcal{K}^* \\
\end{aligned} \]
Next time after we prove local-global compatibility use similar strategy to prove: V prime at # Field # every abelian extension of K # is complex but at some abelian extension of K
(f or K # follows from # Frobenius - Liebew local K - W.)