Math 204B (Number Theory), UCSD, winter 2021

Problem Set 12 - due Thursday, February 4, 2021

1. Let K be the field $\mathbb{Q}(\sqrt{-5})$.
(a) Find a $\mathbb{Z} / 4 \mathbb{Z}$-extension L / K such that $\sqrt{-1} \in L$. (Hint: take L to be abelian over \mathbb{Q}.)
(b) Check that this does not contradict PS 9, problem 3(a).
2. Put $K=\mathbb{Q}_{p}(\sqrt{p})$ for some $p>2$. Compute the Herbrand quotient of K^{*} as a G-module for $G=\operatorname{Gal}\left(\mathbb{Q}_{p}(\sqrt{p}) / \mathbb{Q}_{p}\right)$. (Hint: use the exact sequence $0 \rightarrow \mathcal{O}_{K}^{*} \rightarrow K^{*} \rightarrow \mathbb{Z} \rightarrow 0$.)
3. Let G be a profinite group and let n be a positive integer. Prove that the following two statements are equivalent.
(a) For every open normal subgroup H of G, the group G / H is generated by some subset of at most n elements.
(b) There exist elements $g_{1}, \ldots, g_{n} \in G$ such that for every open normal subgroup H of G, the group G / H is generated by the images of g_{1}, \ldots, g_{n}.
(Hint: use the fact that by Tykhonov's theorem, an inverse limit of nonempty finite sets is nonempty whether or not the transition maps are surjective.)
4. Let G be the group $\mathrm{GL}_{n}\left(\mathbb{Z}_{p}\right)$ for some positive integer n.
(a) Prove that the map $G \rightarrow \varliminf_{m} \mathrm{GL}_{n}\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)$ is an isomorphism. This means that G can be viewed as a profinite group.
(b) Describe a Sylow p-subgroup of G in the sense of CFT exercise 3.4.4.4. (Hint: this is basically the same thing as describing a Sylow p-subgroup of $\mathrm{GL}_{n}\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)$. Try the cases $m=1$ and $m=2$ first to get the idea.)
5. In class, it was stated that the local reciprocity map for $K=\mathbb{Q}_{p}$ is the map

$$
\mathbb{Q}_{p}^{*} \cong \mathbb{Z}_{p}^{*} \times p^{\mathbb{Z}} \rightarrow \mathbb{Z}_{p}^{*} \times \prod_{q \neq p} \mathbb{Z}_{q}^{*} \cong \operatorname{Gal}\left(K_{1} / \mathbb{Q}_{p}\right) \times \operatorname{Gal}\left(K_{2} / \mathbb{Q}_{p}\right)
$$

where $K_{1}=\bigcup_{n} \mathbb{Q}_{p}\left(\zeta_{p^{n}}\right)$ and $K_{2}=\bigcup_{n} \mathbb{Q}_{p}\left(\zeta_{p^{n}-1}\right)$. Check that this map satisfies condition (b) of the local reciprocity law (CFT Theorem 4.1.2) for the extension $L=\mathbb{Q}_{p}\left(\zeta_{p}\right)$. (Optional: also try $L=\mathbb{Q}_{p}\left(\zeta_{p^{n}}\right)$.)

