1. Let G be a finite group. Let M be an induced G-module. Prove directly from the definition of H^i_T that $H^i_T(G, M) = 0$ for $i = 0, -1$.

2. Let K be the splitting field of the polynomial $x^4 + 2x + 2$ over \mathbb{Q}_2. Show that in the ramification filtration on $\text{Gal}(K/\mathbb{Q}_2)$, the largest break for the upper numbering occurs at $4/3$.

3. Prove CFT Proposition 5.2.6 (the compatibility of the reciprocity map with restriction to a subfield).

4. Prove that the subset $[0, 1] \times \prod \mathbb{Z}_p$ of \mathbb{A}_Q surjects onto A_Q/\mathbb{Q}.

5. Let K be a number field. Using the finiteness of the class group and the finiteness of the unit group, prove that there exists some $c > 1$ such that for every idèle x in I_K of norm 1, there exists $\alpha \in K^*$ such that every component of αx has norm in $[c^{-1}, c]$.