Math 204B (Number Theory), UCSD, winter 2021 Problem Set 15 – due Thursday, February 25, 2021

- 1. Let G be a finite group. Let M be an induced G-module. Prove directly from the definition of H_T^i that $H_T^i(G, M) = 0$ for i = 0, -1.
- 2. Let K be the splitting field of the polynomial $x^4 + 2x + 2$ over \mathbb{Q}_2 . Show that in the ramification filtration on $\operatorname{Gal}(K/\mathbb{Q}_2)$, the largest break for the upper numbering occurs at 4/3.
- 3. Prove CFT Proposition 5.2.6 (the compatibility of the reciprocity map with restriction to a subfield).
- 4. Prove that the subset $[0,1] \times \prod_p \mathbb{Z}_p$ of $\mathbb{A}_{\mathbb{Q}}$ surjects onto $\mathbb{A}_{\mathbb{Q}}/\mathbb{Q}$.
- 5. Let K be a number field. Using the finiteness of the class group and the finiteness of the unit group, prove that there exists some c > 1 such that for every idèle x in I_K of norm 1, there exists $\alpha \in K^*$ such that every component of αx has norm in $[c^{-1}, c]$.