## Math 204B (Number Theory), UCSD, winter 2021 <br> Problem Set 16 - due Thursday, March 4, 2021

1. For $S$ a finite set of places of a number field $K$, let $\mathbb{A}_{S}$ be the set of $x \in \mathbb{A}_{K}$ which are integral at all finite places of $K$ (i.e., the "ring of adelic $S$-integers"). Prove that $K+\mathbb{A}_{S}=\mathbb{A}_{K}$. (Hint: apply the Chinese remainder theorem.)
2. (a) Prove that the set of $x \in \mathbb{A}_{\mathbb{Q}}$ such that for all $c \in \mathbb{Q}, c x$ is a sum of three squares is the kernel of the projection $\mathbb{A}_{\mathbb{Q}} \rightarrow \mathbb{R} \times \mathbb{Q}_{2}$.
(b) Let $p$ be an odd prime. Choose $a \in \mathbb{Z}_{(p)}^{*}$ whose reduction modulo $p$ is not a quadratic residue. Prove that the set of $x \in \mathbb{A}_{\mathbb{Q}}$ such that for all $c \in \mathbb{Q}$, $c x$ is in the image of $(y, z, w) \mapsto y^{2}-a z^{2}+p w^{2}$ is the kernel of the projection $\mathbb{A}_{\mathbb{Q}} \rightarrow \prod_{v \in S} \mathbb{Q}_{v}$ for some finite set $S$ of places of $\mathbb{Q}$ containing $v$. (Hint: use the fact that if $q$ is an odd prime and $n$ is an integer not divisible by $p$, then the map $(y, z) \mapsto y^{2}+n z^{2}$ from $\mathbb{F}_{q} \times \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ is surjective. There is a clever proof of this using the pigeonhole principle, but you don't need to include this.)
3. (a) Let $v, w$ be distinct places of $\mathbb{Q}$. Prove that the fields $\mathbb{Q}_{v}$ and $\mathbb{Q}_{w}$ are not isomorphic even if you ignore their topologies. (Hint: prove that the set of $x \in \mathbb{Q}$ which are squares in $\mathbb{Q}_{v}$ is not the same as the set of $x \in \mathbb{Q}$ which are squares in $\mathbb{Q}_{w}$.)
(b) Let $S$ be a finite set of places of $\mathbb{Q}$. Using (a) and the fact that each completion $\mathbb{Q}_{v}$ has trivial automorphism group as a bare ring (see PS 7, problem 7), prove that the product $\prod_{v \in S} \mathbb{Q}_{v}$ has trivial automorphism group as a bare ring.
4. Let $K$ be a number field. Prove that the integral closure of $\mathbb{Q}$ in $\mathbb{A}_{K}$ equals $K$. (Hint: otherwise, there exists a number field $L$ properly containing $K$ such that $L \subseteq \mathbb{A}_{K}$. Now use the fact that there are infinitely many primes of $K$ that do not split completely in $L$ to deduce a contradiction.)
5. Using the previous exercises, prove the following.
(a) The ring $\mathbb{A}_{\mathbb{Q}}$ has trivial automorphism group (as a bare ring).
(b) (Optional) For any totally real Galois number field $K$, the automorphism group of $\mathbb{A}_{K}$ (as a bare ring) is $\operatorname{Gal}(K / \mathbb{Q})$. (See Zulip for hints.)
