Math 204B (Number Theory), UCSD, winter 2021

 Problem Set 9 - due Thursday, January 14, 2021Some reminders: solutions should be submitted via CoCalc (same project as for 204A). Place your solutions in the folder assignments/2021-01-14/ in your course project.

Collaboration and research is fine, as long as you do the following.

- Try the problems yourself first!
- Write the solutions in your own words.
- Acknowledge all sources (textbooks, results from class or previous problem sets, etc.) and collaborators.

New for 204B: please request all extensions in advance of the due date. Remember, you only need to submit 6 of 9 complete problem sets for full credit (or one fewer if you choose the final project option).

1. Let n be a positive integer and let K be a field of characteristic coprime to n. (Note that we are not assuming that $\zeta_{n} \in K$.)
(a) Show that for any $a \in K^{\times},\left[K\left(a^{1 / n}\right): K\right]$ is a divisor of n. (Hint: use induction to reduce to the case where n is prime, then compare what happens over K and $\left.K\left(\zeta_{n}\right).\right)$
(b) Show that $\left[K\left(a^{1 / n}\right): K\right]=n$ if and only if $a \notin\left(K^{\times}\right)^{p}$ for each prime divisor p of n. (Hint: there is a reduction to the case where $n=p^{2}$ and $\zeta_{p} \in K$. In this case, distinguish according to whether or not $\zeta_{n} \in K$.)
2. Prove Dedekind's lemma on linear independence of automorphisms: if L / K is a field extension and g_{1}, \ldots, g_{n} are distinct automorphisms of L over K, then there do not exist $x_{1}, \ldots, x_{n} \in L$ such that $x_{1} g_{1}(y)+\cdots+x_{n} g_{n}(y)=0$ for all $y \in L$. (Hint: choose a counterexample with n minimal, noting that necessarily $n>1$. Since $g_{1} \neq g_{2}$, we can find an element $z \in L^{\times}$such that $g_{1}(z) \neq g_{2}(z)$. We can then modify our original relation either by multiplying on the outside by z or by rescaling the variable y by z; compare these and obtain a contradiction to the choice of n.)
3. (a) Let K be a field of characteristic zero not containing $\sqrt{-1}$. Suppose that there exists a Galois extension L of K containing $\sqrt{-1}$ with Galois group $\mathbb{Z} / 4 \mathbb{Z}$. Prove that there must exist $x, y \in K$ such that $x^{2}+y^{2}=-1$. (Hint: write L as $K\left(\sqrt{-1}, a^{1 / 2}\right)$ for some $a \in K(\sqrt{-1})$. Let σ be a generator of $\operatorname{Gal}(L / K)$ and write $\sigma(a) / a=(x+y \sqrt{-1})^{2}$.)
(b) Show that no such extension can exist when $K=\mathbb{Q}_{2}$.
4. (a) Show that there is no Galois extension of \mathbb{Q}_{2} with Galois group $(\mathbb{Z} / 4 \mathbb{Z})^{3}$. (Hint: separate cases based on whether or not this extension contains $\sqrt{-1}$, and remember the classification of quadratic extensions of \mathbb{Q}_{2} from PS 8.)
(b) Let K be a Galois extension of \mathbb{Q}_{2} such that $\operatorname{Gal}\left(K / \mathbb{Q}_{2}\right)$ is an abelian group of order a power of 2 . Prove that K is contained in $\mathbb{Q}\left(\zeta_{N}\right)$ for some positive integer N.
5. Let p be an odd prime. Let U_{1} be the set of elements of $\mathbb{Z}_{p}\left[\zeta_{p}\right]$ congruent to 1 modulo $\pi=1-\zeta_{p}$. Prove that U_{1}^{p} equals the set of elements of $\mathbb{Z}_{p}\left[\zeta_{p}\right]$ congruent to 1 modulo π^{p+1}. (Hint: use the binomial series as in PS 7 problem 7(b).)
