Math 203C (Number Theory), UCSD, spring 2015 Dedekind zeta functions

Let K be a number field. We define the *Dedekind zeta function* of K as the Dirichlet series

$$\zeta_K(s) = \sum_{n=1}^{\infty} \frac{a_K(n)}{n^s}$$

where $a_K(n)$ counts the number of ideals of \mathfrak{o}_K of absolute norm n. We can also write this as a sum

$$\zeta_K(s) = \sum_{\mathfrak{a}} \frac{1}{\operatorname{Norm}(\mathfrak{a})^s}$$

where \mathfrak{a} runs over nonzero ideals of \mathfrak{o}_K . Either way, we get an Euler product factorization

$$\zeta_K(s) = \prod_p \left(\sum_{n=0}^{\infty} \frac{a_K(p^n)}{p^{ns}} \right) = \prod_{\mathfrak{p}} \left(1 - \frac{1}{\operatorname{Norm}(\mathfrak{p})^s} \right)^{-1}$$

where p runs over rational primes and \mathfrak{p} over maximal ideals of \mathfrak{o}_K . From any of these expansions, we may see that $\zeta_K(s)$ is defined by an absolutely convergent Dirichlet series for Re(s) > 1.

For example, let $K = \mathbb{Q}(\zeta_m)$ be the m-th cyclotomic field. For each prime p not dividing m, let \mathfrak{p} be a prime of $\mathfrak{o}_K = \mathbb{Z}[\zeta_m]$ lying above p. Then the absolute Frobenius automorphism (p-powering) on $\mathfrak{o}_K/\mathfrak{p}$ takes ζ_m to ζ_m^p . Its order, which is also the degree of $\mathfrak{o}_K/\mathfrak{p}$ over \mathbb{F}_p , equals the order of p in the group $(\mathbb{Z}/m\mathbb{Z})^*$. Using this calculation, we may check that

$$\prod_{\mathfrak{p}|p} \left(1 - \frac{1}{\operatorname{Norm}(\mathfrak{p})^s} \right)^{-1} = \prod_{\chi} \left(1 - \frac{\chi(p)}{p^s} \right)^{-1}$$

where χ runs over the Dirichlet characters of level m. In other words, $\zeta_K(s)$ equals the product of the L-functions $L(\chi, s)$ for all Dirichlet characters of level m together with finitely many additional Euler factors. This statement can be interpreted in terms of the representation theory of the group $\operatorname{Gal}(K/\mathbb{Q})$; it naturally generalizes to nonabelian Galois extensions, whose zeta functions factor into $\operatorname{Artin} L$ -functions. More on these later.

Returning to the general case, one has the following result, which we won't prove right now. (It is best proved using a version of the Poisson summation formula on the group of adèles of K, as in Tate's thesis. See the last chapter of Cassels-Fröhlich.)

Theorem 1. The function $\zeta_K(s)$ extends to a meromorphic function on all of \mathbb{C} with a simple pole at s=1 and no other poles. It also admits the functional equation $\Phi_K(s) = \Phi_K(1-s)$ where

$$\Phi_K(s) = \Gamma(s/2)^{r_1} \Gamma(s)^{r_2} 4^{-r_2} |d_K|^{s/2} \pi^{-[K:\mathbb{Q}]s/2} \zeta_K(s)$$

with (as usual) r_1, r_2 being the number of real and complex places of K and d_K being the absolute discriminant of K.

As for the Riemann zeta, one can prove that $\zeta_K(s)$ has no zeroes on the line Re(s) = 1. I leave this as an exercise. The analogue of the Riemann Hypothesis is the following.

Conjecture 2. The zeroes of $\zeta_K(s)$ in the range $\text{Re}(s) \in (0,1)$ all lie on the line Re(s) = 1/2. (Again, the only other zeroes are some trivial zeroes at negative integers imposed by the functional equation.)

I will at least try to say something about the following.

Theorem 3. The residue of $\zeta_K(s)$ at s=1 equals

$$\frac{2^{r_1 + r_2} \pi^{r_2} R_K h_K}{\omega_K |d_K|^{1/2}}$$

where R_K equals the unit regulator of K, h_K equals the class number, and ω_K equals the number of roots of unity in K.