Math 203C (Number Theory), UCSD, spring 2015
The Riemann hypothesis for function fields

Let K be a finite extension of F,(t) for some prime power ¢ in which F, is integrally
closed. Previously, we talked about the zeta function of K and of the associated curve C,
and we stated Weil’s theorem that

Plg)
(1—q*)(1—q")

where P(T) is a polynomial of degree 2¢g (for g the genus of the curve, which is some
nonnegative integer) with integer coefficients and complex roots all on the circle |T| = q'/?
(i.e., Re(s) = 1/2). Moreover, if I write P(T") = Py + P/T + ---, then P, = 1 and Py, =
¢'P,_;; in other words,

Ce(s) =

P(T) = ¢°T*P(1/(qT)).

In these notes, we sketch the proof of this theorem. This discussion will not be self-
contained, because we need the Riemann-Roch theorem in the following form. By a divisor
on C, we will mean a formal Galois-invariant Z-linear combination of F,-rational points of
C. There is an obvious degree map from divisors to integers taking each point to 1; for
example, for any f € C*, the associated principal divisor

(f) = ordp(f)(P)

has degree 0. A divisor D is effective (written D > 0) if its coefficients are nonnegative;
two divisors are equivalent if their difference is a principal divisor. A nontrivial fact we need
is that the degree map surjects onto Z; this would be false if we were working over a field
which is not finite.

Theorem 1. There exist a nonnegative integer g and a divisor K of degree 2g — 2 satisfying
the following conditions.

(a) For each divisor D, there exists a nonnegative integer hp such that the number of
divisors D' which are effective and equivalent to D is (¢"? —1)/(q — 1).

(b) For each divisor D, we have

hD — hKfD = deg(D) +1-— g.

In particular, since hp = 0 whenever deg(D) < 0, we have hp = deg(D)+ 1 — g whenever
deg(D) > 29 — 1. Now write

[e.o]

els) =3

n=1

where a,, is the number of effective divisors of degree n. Since the degree map is surjective,
for any n > 2g — 1, any equivalence class containing an effective divisor of degree n contains
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(¢"™179 —1)/(q — 1) such divisors. For T'= ¢~* and h the order of the class group of C, we
can then write (¢(s) as the sum of

>

n=2g—1

nt+l-g-1 _ 1 1-g h
q T q _

E— G- D1-a) @-DA-T)

plus a polynomial in 7" of degree at most 2g — 2. This gives us the representation

P(q)
(1—=g*)(1—q")

where deg(P) < 2¢g. Put b, = (¢ — 1)a, + 1 and write

Ce(s) =

2g—1

(g = DPTM)A=T)1=qT) =Y (4= Dbn = (g + 1)bn1 + gbn-2).

n=0

Substituting 1/(¢T") for T and using the equality b, = ¢'"9bs, 2, from Riemann-Roch, we
deduce the symmetry property of P.

Now for the Riemann hypothesis. If we write P(T) = (1 — ayT)--- (1 — ag,T) with
a; € C, we are supposed to prove that

jan| = -+ = laay| = g
We will first reduce this problem to a formally simpler talk. First, note that
#COFp) =q¢"+1—af —--- —ay,.
Consequently, on one hand, knowing RH would imply that
—29/q < #C(Fgn) — ¢" — 1 < 29¢">.
On the other hand, if we can show that there exists any C' > 0 such that
#C(Fgn) > ¢" — Cq"™*

for all sufficiently large n, then this would imply RH. Namely, sort the «; so that |a;| >
-+- > |agy|. By symmetry, if these norms are not all equal to /g, then |a;| > /g. Now let

i be the largest index such that |ay| = -+ = |oy|; then by an elementary argument, for any
€ > 0 we can find infinitely many n such that for j =1,...,1,
a”
’1 — i <.
|%’|

But this easily yields a contradiction against the assumed bound.
Unfortunately, proving lower bounds on point counts is hard; it is much easier to get
upper bounds. Fortunately, one can actually convert upper bounds into lower bounds! This
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is most easily seen for the example of a hyperelliptic curve C' : y?> = Q(x). For t a quadratic
nonresidue in F,n, the quadratic twist curve C” : ty* = Q(x) has the property that

#C(Fq") + #C/(Fq”) =2q" +2,

s0 #C(Fgn) — ¢" — 1 and #C'(Fyn) — ¢™ — 1 have equal magnitude but opposite sign.

For general C, one must make a slightly more complicated argument. First, let D be
the curve whose function field is the Galois closure of K over F,(t); then one can show that
Ce(s) divides (p(s), so RH for D implies RH for C. (This divisibility amounts to the fact that
in the function field world, all Artin L-functions are known to admit analytic continuation!
This can also be shown using Riemann-Roch.) So we reduce to the case where K is Galois
over F,(t). In this case, one can make a similar argument using twists defined in terms of
the automorphisms of K over F,(¢), to reduce the lower bound problem about C' to an upper
bound problem about a family of related curves. (One does need to be a bit careful about
uniformity of the arguments, since the family of related curves depends on n.)

Now to prove the upper bound.

Theorem 2. Suppose that q is a square and q¢ > (g + 1)%. Then
#C(Fy) < q+1+ (29 +1)g">

We may assume from the outset that C' contains at least one F -rational point (as oth-
erwise there is nothing to check!), and choose one to label P. For m > 0, let H,, be the set
of f € K for which (f) +mP > 0; that is, f has no poles away from P and at worst a pole
of order m at P. If for some n we can find f € H,, which vanishes at every F,-rational point
of C other than P, it will immediately follow that #C(F,) <n+ 1.

Our strategy will be to take f = >\ v;s? with v; € HY" for some (, yi, where HY" =
{fP" . f € H,} (note that this is again an F,-vector space), and and s; € H,, for some m.
At any FF,-rational point, f takes the same value as does > ., v;s;, so we need only force
the latter to be zero, which we will achieve using linear algebra and Riemann-Roch.

We will further insist that sy, ..., s, be a basis of H,, such that ordp(s;) < --- < ordp(s,).
Provided that /p* < ¢, this ensures that the linear map

r r

pt § : E : q

Hl ®]Fq H,, — H@p”Jrqm? Vi Q 8; — VS,
i=1 =1

of F,-vector spaces is injective: if ¢ < j and v;s, Vjs? are both nonzero, then

{ordp(l/isf) OrdP(VjS?)J

q J = ordp(s;) < ordp(s;) = { q

so there can be no cancellation of poles.
Now define the map

' T
i
6 : H) ®r, Hy, = Hypiym, Zl/i ® s; > E U;8;.
i—1 i=1
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By counting dimensions over F,, we see that
dim(ker(d)) > dim(H,) dim(H,,) — dim(Hpputrm ).
Applying Riemann-Roch, we see that as long as {p* +m > 2g — 1,
dim(ker(d)) > ({+1—g)(m+1—g)— Up"+m+1—g).
If we can choose ¢, m, i so that

p=q"m=q"2+29.0> g+ —L—q'2,
g+1

then dim(ker(d)) is forced to be positive. However, we also want [ < ¢*/2 so that Ip* < ¢; in
order to be able to choose an integral value of ¢, we need
g 172 1/2
+—=—q"? <
g g+ 1(] q

or equivalently ¢ > (g + 1)2.

Now choose Y ., v; ® s; € ker(0) nonzero and put f = >"._, y;s7, which is also nonzero
as shown above. Since f is itself a p#-th power, its zero at each F,-rational point must have
order divisible by p*. So in fact we get

P'(#COF,) — 1) < p' +gqm

and so
#C(F,) — 1 <0+ ¢"Pm < ¢+ ¢"*(¢"* + 29) = ¢ + (29 + 1)¢"/*

as desired.



