
Math 203C (Number Theory), UCSD, spring 2015
The Riemann hypothesis for function fields

Let K be a finite extension of Fq(t) for some prime power q in which Fq is integrally
closed. Previously, we talked about the zeta function of K and of the associated curve C,
and we stated Weil’s theorem that

ζC(s) =
P (q−s)

(1− q−s)(1− q1−s)

where P (T ) is a polynomial of degree 2g (for g the genus of the curve, which is some
nonnegative integer) with integer coefficients and complex roots all on the circle |T | = q1/2

(i.e., Re(s) = 1/2). Moreover, if I write P (T ) = P0 + P1T + · · · , then P0 = 1 and Pg+i =
qiPg−i; in other words,

P (T ) = qgT 2gP (1/(qT )).

In these notes, we sketch the proof of this theorem. This discussion will not be self-
contained, because we need the Riemann-Roch theorem in the following form. By a divisor
on C, we will mean a formal Galois-invariant Z-linear combination of Fq-rational points of
C. There is an obvious degree map from divisors to integers taking each point to 1; for
example, for any f ∈ C×, the associated principal divisor

(f) =
∑
P

ordP (f)(P )

has degree 0. A divisor D is effective (written D ≥ 0) if its coefficients are nonnegative;
two divisors are equivalent if their difference is a principal divisor. A nontrivial fact we need
is that the degree map surjects onto Z; this would be false if we were working over a field
which is not finite.

Theorem 1. There exist a nonnegative integer g and a divisor K of degree 2g− 2 satisfying
the following conditions.

(a) For each divisor D, there exists a nonnegative integer hD such that the number of
divisors D′ which are effective and equivalent to D is (qhD − 1)/(q − 1).

(b) For each divisor D, we have

hD − hK−D = deg(D) + 1− g.

In particular, since hD = 0 whenever deg(D) < 0, we have hD = deg(D)+1−g whenever
deg(D) ≥ 2g − 1. Now write

ζC(s) =
∞∑
n=1

an
qns

where an is the number of effective divisors of degree n. Since the degree map is surjective,
for any n ≥ 2g− 1, any equivalence class containing an effective divisor of degree n contains
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(qn+1−g − 1)/(q − 1) such divisors. For T = q−s and h the order of the class group of C, we
can then write ζC(s) as the sum of

∞∑
n=2g−1

h
qn+1−g−1 − 1

q − 1
T n =

q1−g

(q − 1)(1− qT )
− h

(q − 1)(1− T )

plus a polynomial in T of degree at most 2g − 2. This gives us the representation

ζC(s) =
P (q−s)

(1− q−s)(1− q1−s)

where deg(P ) ≤ 2g. Put bn = (q − 1)an + 1 and write

(q − 1)P (T )(1− T )(1− qT ) =

2g−1∑
n=0

((q − 1)bn − (q + 1)bn−1 + qbn−2).

Substituting 1/(qT ) for T and using the equality bn = q1−gb2g−2−n from Riemann-Roch, we
deduce the symmetry property of P .

Now for the Riemann hypothesis. If we write P (T ) = (1 − α1T ) · · · (1 − α2gT ) with
αi ∈ C, we are supposed to prove that

|α1| = · · · = |α2g| = q1/2.

We will first reduce this problem to a formally simpler talk. First, note that

#C(Fqn) = qn + 1− αn1 − · · · − αn2g.

Consequently, on one hand, knowing RH would imply that

−2g
√
q ≤ #C(Fqn)− qn − 1 ≤ 2gqn/2.

On the other hand, if we can show that there exists any C > 0 such that

#C(Fqn) ≥ qn − Cqn−2

for all sufficiently large n, then this would imply RH. Namely, sort the αi so that |α1| ≥
· · · ≥ |α2g|. By symmetry, if these norms are not all equal to

√
q, then |α1| >

√
q. Now let

i be the largest index such that |α1| = · · · = |αi|; then by an elementary argument, for any
ε > 0 we can find infinitely many n such that for j = 1, . . . , i,∣∣∣∣1− αnj

|αnj |

∣∣∣∣ < ε.

But this easily yields a contradiction against the assumed bound.
Unfortunately, proving lower bounds on point counts is hard; it is much easier to get

upper bounds. Fortunately, one can actually convert upper bounds into lower bounds! This
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is most easily seen for the example of a hyperelliptic curve C : y2 = Q(x). For t a quadratic
nonresidue in Fqn , the quadratic twist curve C ′ : ty2 = Q(x) has the property that

#C(Fqn) + #C ′(Fqn) = 2qn + 2,

so #C(Fqn)− qn − 1 and #C ′(Fqn)− qn − 1 have equal magnitude but opposite sign.
For general C, one must make a slightly more complicated argument. First, let D be

the curve whose function field is the Galois closure of K over Fq(t); then one can show that
ζC(s) divides ζD(s), so RH for D implies RH for C. (This divisibility amounts to the fact that
in the function field world, all Artin L-functions are known to admit analytic continuation!
This can also be shown using Riemann-Roch.) So we reduce to the case where K is Galois
over Fq(t). In this case, one can make a similar argument using twists defined in terms of
the automorphisms of K over Fq(t), to reduce the lower bound problem about C to an upper
bound problem about a family of related curves. (One does need to be a bit careful about
uniformity of the arguments, since the family of related curves depends on n.)

Now to prove the upper bound.

Theorem 2. Suppose that q is a square and q > (g + 1)2. Then

#C(Fq) ≤ q + 1 + (2g + 1)q1/2.

We may assume from the outset that C contains at least one Fq-rational point (as oth-
erwise there is nothing to check!), and choose one to label P . For m ≥ 0, let Hm be the set
of f ∈ K for which (f) +mP ≥ 0; that is, f has no poles away from P and at worst a pole
of order m at P . If for some n we can find f ∈ Hn which vanishes at every Fq-rational point
of C other than P , it will immediately follow that #C(Fq) ≤ n+ 1.

Our strategy will be to take f =
∑r

i=1 νis
q
i with νi ∈ Hpµ

` for some `, µ, where Hpµ

` =
{fpµ : f ∈ H`} (note that this is again an Fq-vector space), and and si ∈ Hm for some m.
At any Fq-rational point, f takes the same value as does

∑r
i=1 νisi, so we need only force

the latter to be zero, which we will achieve using linear algebra and Riemann-Roch.
We will further insist that s1, . . . , sr be a basis of Hm such that ordP (s1) < · · · < ordP (sr).

Provided that `pµ < q, this ensures that the linear map

Hpµ

` ⊗Fq Hm → H`pµ+qm,
r∑
i=1

νi ⊗ si 7→
r∑
i=1

νis
q
i

of Fq-vector spaces is injective: if i < j and νis
q
i , νjs

q
j are both nonzero, then⌊

ordP (νis
q
i )

q

⌋
= ordP (si) < ordP (sj) =

⌊
ordP (νjs

q
j)

q

⌋
so there can be no cancellation of poles.

Now define the map

δ : Hpµ

` ⊗Fq Hm → H`pµ+m,
r∑
i=1

νi ⊗ si 7→
r∑
i=1

νisi.
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By counting dimensions over Fq, we see that

dim(ker(δ)) ≥ dim(H`) dim(Hm)− dim(H`pµ+m).

Applying Riemann-Roch, we see that as long as `pµ +m ≥ 2g − 1,

dim(ker(δ)) ≥ (`+ 1− g)(m+ 1− g)− (`pµ +m+ 1− g).

If we can choose `,m, µ so that

µ = q1/2,m = q1/2 + 2g, ` > g +
g

g + 1
q1/2,

then dim(ker(δ)) is forced to be positive. However, we also want l < q1/2 so that lpµ < q; in
order to be able to choose an integral value of `, we need

g +
g

g + 1
q1/2 < q1/2

or equivalently q > (g + 1)2.
Now choose

∑r
i=1 νi ⊗ si ∈ ker(δ) nonzero and put f =

∑r
i=1 µis

q
i , which is also nonzero

as shown above. Since f is itself a pµ-th power, its zero at each Fq-rational point must have
order divisible by pµ. So in fact we get

pµ(#C(Fq)− 1) ≤ `pµ + qm

and so
#C(Fq)− 1 ≤ `+ q1/2m ≤ q1/2 + q1/2(q1/2 + 2g) = q + (2g + 1)q1/2

as desired.
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