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Zeta functions for function fields

Fix a prime number p. Let K be a finite extension of the rational function field Fp(t).
As in the number field case, the integral closure oK of Fp[t] in K is a Dedekind domain, and
we may define the Dedekind zeta function of K as the Dirichlet series

ζK(s) =
∞∑
n=1

aK(n)

ns

where aK(n) counts the number of ideals of oK of absolute norm n. We can also write this
as a sum

ζK(s) =
∑
a

1

Norm(a)s

where a runs over nonzero ideals of oK . We get an Euler product factorization

ζK(s) =
∏
p

(
1− 1

Norm(p)s

)−1
where p runs over rational primes and p over maximal ideals of oK . From any of these
expansions, we may see that ζK(s) is defined by an absolutely convergent Dirichlet series for
Re(s) > 1.

However, in this case one has a more geometric interpretation of this construction. Let
Fq be the integral closure of Fp in K. Then K can be identified with the field of rational
functions on a certain smooth affine algebraic curve C0 over Fq. Each prime ideal p of oK
has norm qm for some positive integer m, so we can rewrite the Dirichlet series for ζK(s) as
a power series in q−s.

Lemma 1. We have an identity of formal power series in q−s:

ζK(s) = exp

(
∞∑
n=1

#C0(Fqn)

n
q−ns

)
.

Proof. Each prime ideal p of norm qm gives rise to m distinct points on #C0 over Fqm , and
hence also over Fqmn for every positive integer n. Now note that∑

p

log

(
1− 1

Norm(p)s

)−1
=
∑
p

∞∑
n=1

1

n
Norm(p)−ns

=
∞∑
m=1

∑
p:Norm(p)=qm

∞∑
n=1

m

mn
q−mns

=
∞∑
d=1

∑
m|d

∑
p:Norm(p)=qm

m

 1

n
q−ds.
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For example, if K = Fq(t), then C0 is the affine line over Fq, so #C0(Fqn) = qn for all n.
We thus have

ζK(s) = exp

(
∞∑
n=1

qn

n
q−ns

)
= (1− q1−s)−1.

In particular, ζK(s) extends to a meromorphic function on C with a simple pole at s = 1
with no zeroes whatsoever! One discrepancy with the Riemann zeta function: there are also
poles at s = 1 + 2πin

log q
for all n ∈ Z.

As with Dedekind zeta functions, one can get something with a good functional equation
by adding Euler factors corresponding to completions of K restricting to the infinite place of
Fp(t) to get a new function ξK(s). The latter is the ∞-adic absolute value: |f |∞ = pord∞(f).
Unlike in the number field case, though, these missing Euler factors have a similar shape
as the finite ones; you just add one factor of (1 − q−ms) for each infinite place with residue
field Fqm . One then has an analogue of Lemma 1 where one counts points on the smooth
projective completion C of C0. (For this reason, ξK is commonly denoted ζC and is itself
called the zeta function of the curve C. For K = Fq(t), we get

ξK(s) = (1− q−s)−1(1− q1−s)−1

which satisfies ξK(s) = q−1ξK(1− s).

Theorem 1 (Weil). For any K, ξK(s) extends to a meromorphic function on C with simple
poles at s = 2πin

log q
, s = 1 + 2πin

log q
and no other poles. There is also a functional equation of the

form
ξK(1− s) = qa+bsξK(s)

for certain constants a, b.

Better yet, the analogue of the Riemann hypothesis is a theorem! More on this later.

Theorem 2 (Weil). The zeroes of ξK(s) all lie on the line Re(s) = 1
2
.

For example, if C is an elliptic curve, then by results of Hasse we have

ζK(s) =
(1− αq−s)(1− βq−s)
(1− q−s)(1− q1−s)

for some α, β ∈ C which are complex conjugates of each other and have product q. In
general,

ζK(s) =
P (q−s)

(1− q−s)(1− q1−s)
where P (T ) = P0 + P1T + · · · + P2gT

2g is a polynomial with integer coefficients of degree
2g, where g is the genus of the curve, P0 = 1, Pg+i = qiPg−i, and the complex roots of P all
have absolute value q1/2.
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