Math 203C (Number Theory), UCSD, spring 2015
Zeta functions for function fields

Fix a prime number p. Let K be a finite extension of the rational function field F,(t).
As in the number field case, the integral closure of of IF,[t] in K is a Dedekind domain, and
we may define the Dedekind zeta function of K as the Dirichlet series
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where ax(n) counts the number of ideals of ok of absolute norm n. We can also write this

as a sum )
Crels) = ; Norm(a)#

where a runs over nonzero ideals of 0. We get an Euler product factorization

where p runs over rational primes and p over maximal ideals of ox. From any of these
expansions, we may see that (x(s) is defined by an absolutely convergent Dirichlet series for
Re(s) > 1

However, in this case one has a more geometric interpretation of this construction. Let
F, be the integral closure of F, in K. Then K can be identified with the field of rational
functions on a certain smooth affine algebraic curve Cy over [F,. Each prime ideal p of ox
has norm ¢™ for some positive integer m, so we can rewrite the Dirichlet series for (x(s) as
a power series in q~°

Lemma 1. We have an identity of formal power series in q¢—°
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Proof. Each prime ideal p of norm ¢ gives rise to m distinct points on #Cj over Fym, and
hence also over [Fymn for every positive integer n. Now note that
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For example, if K =TF,(t), then Cj is the affine line over F,, so #Cy(F,n) = ¢" for all n.
We thus have

o
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Ck(s) = exp <; - ) =(1—qg %) .
In particular, (x(s) extends to a meromorphic function on C with a simple pole at s = 1
with no zeroes whatsoever! One discrepancy with the Riemann zeta function: there are also
polesats:1+fgrl;forallnez.

As with Dedekind zeta functions, one can get something with a good functional equation
by adding Euler factors corresponding to completions of K restricting to the infinite place of
F,(t) to get a new function £ (s). The latter is the oo-adic absolute value: |f|, = p°rd=(/),
Unlike in the number field case, though, these missing Euler factors have a similar shape
as the finite ones; you just add one factor of (1 — ¢=™*) for each infinite place with residue
field Fym. Ome then has an analogue of Lemma 1 where one counts points on the smooth
projective completion C' of Cy. (For this reason, £k is commonly denoted (¢ and is itself

called the zeta function of the curve C. For K =F (), we get
€x(s)=(1-q ) (1-¢ )"
which satisfies {x(s) = ¢ ¢k (1 — ).

Theorem 1 (Weil). For any K, {x(s) extends to a meromorphic function on C with simple

ch)oles at s = fggiz, s=1+ fggz and no other poles. There is also a functional equation of the
orm

Ex(1—s) = "¢k (s)

for certain constants a,b.
Better yet, the analogue of the Riemann hypothesis is a theorem! More on this later.

Theorem 2 (Weil). The zeroes of £k (s) all lie on the line Re(s) = 1.

For example, if C' is an elliptic curve, then by results of Hasse we have

(1 —aq*)(1—p5q)
(1—¢)(1—q")

for some «a, 3 € C which are complex conjugates of each other and have product ¢. In
general,
Plq™)

(1—g¢)(1—q")

where P(T) = Py + P,\T + --- + P,/ T% is a polynomial with integer coefficients of degree
2g, where g is the genus of the curve, Py = 1, P,.; = ¢'P,_;, and the complex roots of P all
have absolute value ¢'/2.
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