Math 206A (Topics in Algebraic Geometry): Weil cohomology in practice Kiran S. Kedlaya, fall 2019 Problem set 1

Recommended reading: Weil, "Number of solutions of equations in finite fields". (Links for recommended readings can be found on the course web site.)
(1) Let k be a finite field of order q and fix an additive character (homomorphism) $\psi: k \rightarrow \mathbb{C}^{\times}$. For $\chi: k^{\times} \rightarrow \mathbb{C}^{\times}$a nontrivial multiplicative character, define the Gauss sum

$$
G_{\psi}(\chi)=\sum_{x \in k^{\times}} \chi(x) \psi(x)
$$

Prove that $G_{\psi}(\chi) G_{\psi}(\bar{\chi})=q$, where $\bar{\chi}$ is the character for which $\bar{\chi}(x)$ is the complex conjugate of $\chi(x)$. (Hint: write the product as a sum over $x, y \in k^{\times}$, then regroup terms by the value of x / y.)
(2) Fix a choice of χ as above. For $P(T)=T^{n}+P_{n-1} T^{n-1}+\cdots+P_{0} \in k[T]$ a monic polynomial, define

$$
\lambda(P)=\chi\left(P_{0}\right) \psi\left(P_{n-1}\right) .
$$

(In particular, $\lambda(1)=1$.) Show that

$$
\lambda\left(P_{1} P_{2}\right)=\lambda\left(P_{1}\right) \lambda\left(P_{2}\right) \quad\left(P_{1}, P_{2} \in k[T]\right)
$$

and deduce that for each positive integer n, in $\mathbb{C} \llbracket U \rrbracket$ we have

$$
\sum_{P \in k[T] \text { monic }} \lambda(P) U^{\operatorname{deg}(P)}=\prod_{Q \in k[T] \text { monic irreducible }}\left(1-\lambda(Q) U^{\operatorname{deg} Q}\right)^{-1} .
$$

(3) Show that for n a nonnegative integer,

$$
\sum_{P \in k[T] \text { monic, } \operatorname{deg}(P)=n} \lambda(P) U^{\operatorname{deg}(P)}= \begin{cases}1 & n=0 \\ G_{\psi}(\chi) U & n=1 \\ 0 & n>1\end{cases}
$$

(4) With notation as in the previous problem, let k^{\prime} be an extension of k of degree v. Let $\psi^{\prime}: k^{\prime} \rightarrow \mathbb{C}^{\times}$be the additive character given by $\psi \circ \operatorname{Trace}_{k^{\prime} / k}$. Given χ, let χ^{\prime} be the multiplicative character given by $\chi \circ \operatorname{Norm}_{k^{\prime} / k}$. For $P^{\prime} \in k^{\prime}[T]$ monic, define λ^{\prime} by analogy with λ.

For $P \in k[T]$ monic irreducible, let P^{\prime} run over the irreducible factors of P in $k^{\prime}[T]$. Prove that

$$
\prod_{P^{\prime}}\left(1-\lambda^{\prime}\left(P^{\prime}\right) U^{v \operatorname{deg}\left(P^{\prime}\right)}\right)=\prod_{\rho=0}^{v-1}\left(1-\lambda(P)\left(e^{2 \pi i \rho / v} U\right)^{\operatorname{deg}(P)}\right) .
$$

(Hint: let $-\xi$ be a root of one of the factors P^{\prime}, and consider the field extensions $k(\xi) / k$ and $\left.k^{\prime}(\xi) / k^{\prime}.\right)$
(5) Using all of the above, deduce the Davenport-Hasse relation

$$
-G_{\psi^{\prime}}\left(\chi^{\prime}\right)=\left(-G_{\psi}(\chi)\right)^{v}
$$

