Math 206A (Topics in Algebraic Geometry): Weil cohomology in practice Kiran S. Kedlaya, fall 2019
 Problem set 2

Throughout, let \mathbb{F}_{q} denote a finite field of characteristic p.
(1) For X an algebraic variety over \mathbb{F}_{q}, we write the zeta function of X as $Z\left(X, q^{-s}\right)$ for

$$
Z(X, T)=\prod_{x \in X^{\circ}}\left(1-T^{\operatorname{deg}(x)}\right)^{-1}
$$

where X° denotes the set of Galois orbits of $\overline{\mathbb{F}_{q}}$-points and $\operatorname{deg}(x)$ is the cardinality of such an orbit. Prove that in $\mathbb{Q} \llbracket T \rrbracket$, we have the equality

$$
Z(X, T)=\exp \left(\sum_{n=1}^{\infty} \frac{T^{n}}{n} \# X\left(\mathbb{F}_{q^{n}}\right)\right) .
$$

(2) For X equal to the n-dimensional projective space over \mathbb{F}_{q}, compute that

$$
Z(X, T)=\frac{1}{(1-T)(1-q T) \cdots\left(1-q^{n} T\right)}
$$

(3) Prove that the following statements are equivalent.
(i) The power series $Z(X, T)$ represents a rational function in T.
(ii) There exist $\alpha_{1}, \ldots, \alpha_{r}, \beta_{1}, \ldots, \beta_{s} \in \mathbb{C}$ such that

$$
\# X\left(\mathbb{F}_{q^{n}}\right)=\alpha_{1}^{n}+\cdots+\alpha_{r}^{n}-\beta_{1}^{n}-\cdots-\beta_{s}^{n} \quad(n=1,2, \ldots) .
$$

(4) Let X be the Grassmannian of k-dimensional subspaces of m-space over \mathbb{F}_{q}.
(i) Compute $\# X\left(\mathbb{F}_{q^{n}}\right)$; your answer should be a polynomial in q^{n} depending on k and m. (Hint: count bases of subspaces, then divide by the number of bases of a given subspace.)
(ii) Compute $Z(X, T)$.
(5) Choose $a_{0}, \ldots, a_{r} \in \mathbb{F}_{q}^{\times}$. For d a positive integer dividing $q-1$, let X_{d} be the projective hypersurface $a_{0} x_{0}^{d}+\cdots+a_{r} x_{r}^{d}=0$.
(i) Let G_{d} be the group of homomorphisms $\chi: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$of order d. For $\chi \in G_{d}$, extend the definition of χ to \mathbb{F}_{q} by setting $\chi(0)=1$ if $\chi=1$ and $\chi(0)=0$ otherwise. Show that

$$
1+(q-1) \# X_{d}\left(\mathbb{F}_{q}\right)=\sum_{\left(u_{0}, \ldots, u_{r}\right) \in X_{1}} \sum_{\chi_{0}, \ldots, \chi_{r} \in G_{d}} \prod_{i=0}^{r} \chi_{i}\left(u_{i}\right) .
$$

(ii) Show that $\chi_{0}, \ldots, \chi_{r} \in G_{d}$ are neither all equal to 1 or all distinct from 1 , then

$$
\sum_{\left(u_{0}, \ldots, u_{d}\right) \in X_{1}} \prod_{i=0}^{r} \chi_{i}\left(u_{i}\right)=0
$$

(iii) Let T be the set of tuples $\left(\chi_{0}, \ldots, \chi_{r}\right) \in G_{d} \backslash\{1\}$ with $\chi_{0} \cdots \chi_{r}=1$. For $\left(\chi_{0}, \ldots, \chi_{r}\right) \in T$, define the Jacobi sum

$$
j\left(\chi_{0}, \ldots \chi_{r}\right)=\frac{1}{q-1} \sum_{u_{0}, \ldots, u_{r} \in \mathbb{F}_{q}: u_{0}+\cdots+u_{r}=0} \chi_{0}\left(u_{0}\right) \cdots \chi_{r}\left(u_{r}\right) .
$$

Deduce from above that

$$
\# X_{d}\left(\mathbb{F}_{q}\right)=1+q+\cdots+q^{r-1}+\sum_{\left(\chi_{0}, \cdots, \chi_{r}\right) \in T} \chi_{0}\left(a_{0}^{-1}\right) \cdots \chi_{r}\left(a_{r}^{-1}\right) j\left(\chi_{0}, \ldots, \chi_{r}\right) .
$$

(iv) Fix an additive character $\psi: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$. Show that

$$
j\left(\chi_{0}, \ldots, \chi_{r}\right)=\frac{1}{q} G\left(\chi_{0}, \psi\right) \cdots G\left(\chi_{r}, \psi\right)
$$

where $G(\chi, \psi)$ denotes the Gauss sum.
(6) Keep notation as in the previous exercise, but assume only that d is not divisible by p (not that it divides $q-1$).
(i) Show that $\# X_{d}\left(\mathbb{F}_{q}\right)=\# X_{e}\left(\mathbb{F}_{q}\right)$ for $e=\operatorname{gcd}(d, q-1)$.
(ii) Using the Davenport-Hasse relation, show that the rationality, functional equation, and Riemann hypothesis hold for $Z\left(X_{d}, T\right)$.

