Math 206A (Topics in Algebraic Geometry): Weil cohomology in practice Kiran S. Kedlaya, fall 2019
 Problem set 4

(1) Let K be a number field. Using the Chebotarev density theorem, prove that the Frobenius elements corresponding to maximal ideals of \mathfrak{o}_{K} are dense in the absolute Galois group G_{K}. (This is just an exercise in unwinding the definitions.)
(2) In this exercise, we prove the theorem of Borel stated in class on November 3.
(a) Let $f(T)=\sum_{n=0}^{\infty} a_{n} T^{n}$ be a power series over an arbitrary field K. Prove that $f(T)$ represents a rational function over K if and only if for some positive integer m, the determinants of the $(m+1) \times(m+1)$ matrices $A_{n, m}=\left(a_{n+i+j}\right)_{i, j=0}^{m}$ vanish for all sufficiently large n.
(b) Let $f(T)=\sum_{n=0}^{\infty} a_{n} T^{n}$ be a power series over \mathbb{Z}. Let $r>0$ be a real number such that over \mathbb{Q}_{p}, there exists a polynomial $P(T)$ of degree $d<m$ such that $P(T) f(T)$ converges for $|T|<r+\epsilon$ for some $\epsilon>0$. (We do not assume that P has coefficients in \mathbb{Z}.) Prove that for some $C>0$, $\left|\operatorname{det}\left(A_{n, m}\right)\right|_{p} \leq C r^{-n(m-d)}$ for all n.
(c) Let $f(T)=\sum_{n=0}^{\infty} a_{n} T^{n}$ be a power series over \mathbb{Z}. Let R and r be real numbers with $R r>1$ such that over $\mathbb{C}, f(T)$ converges for $|T|<R$; and over $\mathbb{Q}_{p}, f(T)$ is the ratio of two series that converge for $|T|<r$. Prove that f represents a rational function. (Hint: apply (b) with r replaced by $r-\epsilon$ for which $(R-\epsilon)(r-\epsilon)>1$, then combine with a trivial bound on $\left|\operatorname{det}\left(A_{n, m}\right)\right|_{\infty}$.)
(3) Let π be an element of an algebraic closure of \mathbb{Q}_{p} satisfying $\pi^{p-1}=-p$. (You may use without proof the fact that $\mathbb{Z}_{p}[\pi]$ is a discrete valuation ring with maximal ideal (π).) Define the power series

$$
E_{\pi}(T)=\exp \left(\pi\left(T-T^{p}\right)\right) \in \mathbb{Q}_{p}(\pi) \llbracket T \rrbracket .
$$

(a) Prove that $E_{\pi}(T) \in 1+\pi \mathbb{Z}_{p}[\pi] \llbracket T \rrbracket$.
(b) Prove that $E_{\pi}(T)$ has radius of convergence strictly greater than 1. In particular, it makes sense to evaluate it at any element of $\mathbb{Z}_{p}[\pi]$.
(c) Prove that if $t \in \mathbb{Z}_{p}$ satisfies $t^{p}=t$, then $E_{\pi}(t)^{p}=1$. (Hint: check that in the identity

$$
E_{\pi}(T)^{p}=\exp (\pi p T) \exp \left(-\pi p T^{p}\right)
$$

it is valid to substitute t separately into the two factors on the right.)
(4) With notation as in the previous problem, let n be a positive integer and define

$$
E_{n}(T):=\exp \left(\pi\left(T-T^{p^{n}}\right)\right)=E_{\pi}(T) E_{\pi}\left(T^{p}\right) \cdots E_{\pi}\left(T^{p^{n-1}}\right) \in \mathbb{Q}_{p}(\pi) \llbracket T \rrbracket
$$

Show that the formula $t \mapsto E_{n}([t])$ defines a nontrivial additive character on $\mathbb{F}_{p^{n}}$, where $[t]$ denotes the unique element of $\mathbb{Z}_{p^{n}}$ (the finite étale extension of \mathbb{Z}_{p} with residue field $\mathbb{F}_{p^{n}}$) lifting t and satisfying $t^{p^{n}}=t$.
(5) Set $q=p^{n}$ and let

$$
f=\sum_{I=\left(i_{1}, \ldots, i_{d}\right)} a_{I} x_{1}^{i_{1}} \cdots x_{d}^{i_{d}} \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{d}\right]
$$

be a polynomial. Prove that for any positive integer m, the number of points $\left(x_{1}, \ldots, x_{d}\right) \in$ $\left(\mathbb{F}_{q^{m}}^{\times}\right)^{d}$ for which $f\left(x_{1}, \ldots, x_{d}\right)=0$ equals

$$
\frac{\left(q^{m}-1\right)^{d}}{q^{m}}\left(1+\left(q^{m}-1\right) \sum_{x_{0}, \ldots, x_{d} \in \mathbb{F}_{q^{m}}^{\times}} \prod_{I: a_{I} \neq 0} \prod_{j=0}^{m-1} E_{\pi}\left(a_{I}\left(\left[x_{0}\right]\left[x_{1}\right]^{i_{1}} \cdots\left[x_{d}\right]^{i_{d}}\right)^{q^{j}}\right)\right) .
$$

