Math 206A (Topics in Algebraic Geometry): Weil cohomology in practice Kiran S. Kedlaya, fall 2019 Problem set 5

(1) Define the rings

 $R = \mathbb{Z}[x_1, y_1, x_2, y_2, \dots], \quad R' = \mathbb{Q}[x_1, y_1, x_2, y_2, \dots], \quad F = \operatorname{Frac}(R) = \operatorname{Frac}(R').$

Define the power series $x = 1 + x_1T + x_2T^2 + \cdots$, $y = 1 + y_1T + y_2T^2 + \cdots$, and

$$f = 1/\exp(\log(1/x) \star \log(1/y)) \in R'\llbracket T\rrbracket$$

where \star denotes the *Hadamard product*:

 $(a_1T + a_2T^2 + \cdots) \star (b_1T + b_2T^2 + \cdots) = a_1b_1T + a_2b_2T^2 + \cdots$

(a) Let V_1, V_2 be two finite-dimensional vector spaces over F equipped with endomorphisms φ_1, φ_2 satisfying, for some positive integer n,

$$\det(1 - \varphi_1 T, V_1)^{-1} \equiv 1 + x_1 T + \dots + x_n T^n \pmod{T^{n+1} F[\![T]\!]},$$

$$\det(1 - \varphi_2 T, V_2)^{-1} \equiv 1 + y_1 T + \dots + y_n T^n \pmod{T^{n+1} F[\![T]\!]},$$

Prove that

$$\det(1 - (\varphi_1 \otimes \varphi_2)T, V_1 \otimes_F V_2)^{-1} \equiv f \pmod{T^{n+1}F[\![T]\!]}.$$

(Hint: pass to an algebraic closure of F and write everything in terms of eigenvalues. Remember that f is determined mod $T^{n+1}F[\![T]\!]$ by $x_1, \ldots, x_n, y_1, \ldots, y_n$.)

(b) Deduce that $f \in R[[T]]$.

- (2) Using the previous exercise, prove that there is a unique functor Λ from rings to rings with the following properties.
 - (a) The underlying functor from rings to additive groups takes R to $\Lambda(R) = 1 + TR[T]$ with the usual series multiplication.
 - (b) For any ring R, the multiplication map * on $\Lambda(R)$ satisfies

$$(1 - aT)^{-1} * (1 - bT)^{-1} = (1 - abT)^{-1}$$
 $(a, b \in R).$

The ring $\Lambda(R)$ is (a form of) the ring of big Witt vectors with coefficients in R.

(3) Let X_1, X_2 be two varieties over \mathbb{F}_q . Prove that in $\Lambda(\mathbb{Z})$, we have

$$Z(X_1 \times_{\mathbb{F}_q} X_2, T) = Z(X_1, T) * Z(X_2, T).$$

- (4) Let K be a field of characteristic 0. Let $P(x) \in K[x]$ be a monic polynomial of degree 2g + 1 with no repeated roots.
 - (a) Let X be the affine scheme Spec $K[x, y]/(y^2 P(x))$. Prove that $\Omega^1_{X/K}$ is freely generated by dx/y. (Hint: it suffices to check that dx/y is a nowhere vanishing section of $\Omega^1_{X/K}$. Treat the points where y = 0 and $y \neq 0$ separately.)
 - (b) Prove that $H^1_{dR}(X)$ admits the basis

$$x^i \frac{dx}{y}$$
 $(i=0,\ldots,2g-1)$

(Hint: for each integer $d \ge 2g$, write down a relation of the form Q(x)dx/y with $\deg(Q) = d$.)

(c) Let Y be the affine scheme Spec $K[x,y,z]/(y^2-P(x),yz-1).$ Prove that $H^1_{\rm dR}(Y)$ admits the basis

$$x^{i}\frac{dx}{y}$$
, $(i = 0, \dots, 2g - 1);$ $x^{i}\frac{dx}{y^{2}}$ $(i = 0, \dots, 2g).$

- (5) Let p > 2 be a prime. Let $\overline{P} \in \mathbb{F}_p[x]$ be a monic polynomial of degree 2g + 1 with no repeated roots.
 - (a) Put $\overline{X} = \operatorname{Spec} \mathbb{F}_p[x, y]/(y^2 \overline{P}(x))$. Prove that $H^1_{MW}(\overline{X})$ admits the basis

$$x^i \frac{dx}{y} \qquad (i = 0, \dots, 2g - 1).$$

(b) Put $\overline{Y} = \text{Spec} \mathbb{F}_p[x, y, z]/(y^2 - \overline{P}(x), yz - 1)$. Prove that $H^1_{MW}(\overline{Y})$ admits the basis

$$x^{i}\frac{dx}{y}$$
, $(i = 0, \dots, 2g - 1);$ $x^{i}\frac{dx}{y^{2}}$ $(i = 0, \dots, 2g).$