The Hodge-Tate comparison map

I decided to insert another background section, this one on double complexes (including totalization and the double complex spectral sequence). This will be covered this Friday (April 23).

Aldus Hodge, Omari Hardwick, Larenz Tate, and Common (2017)

Review: the prismatic site (-1, -1) $A = A_{T}(S_{T,Ce})$ $n = \overline{n} - 1$ et h (-1, -1) $A = A_{T}(S_{T,Ce})$ (-1, -1) (-1, $(\mathbb{Z}/\mathbb{A})_{\Lambda} = \langle$ J R (mpotensms) with indiscrete Cothedicck tyday A A (or flag topulory) (A JI) - J(13, J) is frithfilly Mith if (A JI) - J(13, J) is frithfilly Mith BBL AJE concentrated in A JI3. is I - completely Mith BBL AJE ugo & Faita FAIL Mat hus Frike produkty mal abjects ore AT

<u>Remark: the case of a perfect prism</u> IF (A, I) is nontect prom (A=les) can consider stratyony ut (R/A)D where (13, IB) is also prefect and 13/1 13 p-numal This is esternally the dismond of R (SKL./re) 13/Ip-husing Free Arintyaly Aurdin BE (PT) $(X \in B \mid F \leq 1), X \in B \mid F \rightarrow X \in B \mid F)$

Graded commutativity

E = (not recessing commutative) jude dans E is grade commutative if all all $\alpha G = (7)^{m} G \alpha C$ Emple Arry, K= conntrare A-eyeon object MD(A)) KOKKK The PHM(K.) inherts a sould wondative how his structure, (has hold an Tot(LOM)=Tot(MOL)

<u>Differential graded algebras (dgas)</u> ACRING A-Asnisarapex (Ed) of Amoulles in which E is also $s_{jert pod wth snded t - abile a statute$ $s_{jert po} <u>synd Levenz ne</u> fiets$ $<math display="block">d^{ntm}(ab) = d^{n}(a)b + (-1)^{n}ad(b)b + (E^{n})$ Connatative: I E is graded compative stuctly commutative: commutative + a.a.D for my alt Eodd

<u>Universal property of the (completed) de Rham complex</u>

A >B morphism <u>n</u> <u>Rins</u> (<u>L</u>3/A, dA12) = (B → <u>L</u>3/_A) <u>D</u>_{B/A} → <u>-</u>) <u>is shelly</u> connective A -don. Tet (E" d) le a groded <u>structly conntature</u> A-dya (in agrees) Men : 13 = E" extends uniquely to <u>Lizix</u> -> E" in fat, can get by with unity conntature <u>if</u> $d(\eta(x))^2 = 0$ $\forall x \in B$

<u>Bockstein (Бокштейн) differentials: statement</u>

A=nns, I= invertile, de MEDLA BUILD (MOX IN) - NIN (MOL INA THI) - NIN (MOL INA THI) (JJ2)0~ be plannecty homomorphism in $MO_{A}^{L}\left(0 \rightarrow I^{M}_{I^{1}L^{2}} \rightarrow I^{M}_{I^{1}$ The propred, is set a complex!

Bockstein (Бокштейн) differentials: proof

Bockstein differentials in Hodge-Tate cohomology For $M \in M \circ A_{\overline{A}}$ $M \leq \Lambda_{\overline{A}} = M \circ I_{\underline{A}_{T}}^{\eta}$ $M \leq \Lambda_{\overline{A}} = M \circ I_{\underline{A}_{T}}$ OB sheet on (R/A)D -se tuiseste moin Bochsten worstanden =) β_{I} : $H^{(A_{R/A})}(\gamma) \rightarrow H^{(A_{N/A})}(\gamma)$ PHYARAKI IS a compative A-lga. -) get SLRIA -> @HM(ARIAKA] (molde checking strict comulationity) my of A- 15-15

Statement of the comparison theorem

The (A, I) Junded R = p-completely mouth A-algelian (e.s. prompletery smooth A-algelian in fact, by Elkik this is equalent) m / R (LR/A, 1 M)-)(11 (AR/A) 5-3, p-wy letter to complex B_I) 15 an isomorphism of A-Isas. $(mt: h^{\circ}(\overline{A}_{12/A}) \in \mathbb{Z}).$

Example: q-de Rham cohomology of the torus $(A, I) = (\mathcal{R}_p[\overline{q} \neg D, (\mathcal{C}_p)_{\overline{q}})) \qquad \overline{q}$ $\overline{A} \cong \mathcal{R}_{p}(\mathcal{Y}) \quad (1 \to \mathcal{Y}_{p})$ $R = \overline{A} \langle X^{\pm} \rangle = p - uphhn if A \langle X^{\pm} \rangle$ $= \overline{P} A X^{i}$ he "I show $A_{Z/A} = (A(X^{+}) \xrightarrow{V_{q}} A(X^{+}) \xrightarrow{V_{q}} A(X^{+$

Just one more thing... (i) = { unit in A if T to ridp i my (200 MA if Edmidp. 1. $\overline{D}_{R/A} = \overline{O}_{KER} (\overline{A} \times \mathcal{K}_{P} \xrightarrow{\sim} \overline{A} \times \mathcal{K}_{P})$ If p=2, dor'the a provident HT chan 15 <u>shictly</u> completing or even $d(\eta(x))^2 = 0$ xer proped, complet HT about R = A(x)see that yought or in dgree 2 base charge from this carse

 $\frac{\text{roof of the Bockstein lemma}}{O((\alpha (a) \alpha h + b) + b(a - b))}$ **Proof of the Bockstein lemma** (alp assure I=(+) pick very final object (SITO+ R/A/D where F is f-hisimhel. Statung Aging M/F/ by lithy from FIFF & Fing