Double complexes

Due to low usage, my Monday evening office hours (8-9pm PDT) will hereafter be by request only, via PM in Zulip. (If you're not on Zulip, use the Google Form on the course website to request access.)

Data Type Declarations

- Basic data types are:
- INTEGER - integer numbers (+/-)
- REAL - floating point numbers
- DOUBLE PRECISION - extended precision floating point
- CHARACTER*n - string with up to n characters
- LOGICAL - takes on values .TRUE . or . FALSE.
- COMPLEX - complex number
- Integer and Reals can specify number of bytes to use
- Default is: INTEGER*4 and REAL*4
- DOUBLE PRECISION is same as REAL*8
- Arrays of any type must be declared:
- DIMENSION A $(3,5)$ - declares a 3×5 array (implicitly REAL)
- CHARACTER*30 NAME (50) - directly declares a character array with 30 character strings in each element
- FORTRAN 90/95 allows user defined types

Totalization

$$
K^{\circ \prime}=\text { dosle wopex }
$$

Interchanging the rows and columns

$$
K^{\prime \prime}{ }^{\prime \prime}=\text { darle woplex }
$$

truspoie $L^{"} L^{p, r}=k^{2, r}$
There is watualizatio

$$
\text { Tut }\left(K^{\circ}, \geqslant\right) \cong \operatorname{Rt}\left(L^{\circ}{ }^{\circ}\right)
$$

 いitr

s, xia mitplicatuly (7)pq

Graded commutativity $A \in \operatorname{Ring}_{\text {g }}$ bounde d belon) $K \cdot$ is wnmurative aphes ob, ieAt, $\sim 1(A)$.
inteprt $K^{\otimes}{ }^{2} K \cdot \rightarrow$ as a nyp
ot ionplex $L_{,}{ }^{*}, L_{2}^{*} \rightarrow L_{3}^{*}$
 $L_{1}^{m} \otimes L_{2}^{n} \rightarrow \operatorname{Dot}^{m}\left(L_{1} ; \theta L_{2}{ }^{n}\right) \rightarrow L_{3}^{m+n}$
 \Rightarrow sraded winsutivity. $\operatorname{rot}\left(L_{2} \dot{\theta} Q L_{1}\right)$

The spectral sequences) of a double complex

$$
\begin{aligned}
& s_{i}, 1, E_{0}^{r, r}=K_{0}^{r, q} \\
& \text { 2. } d_{i,}^{n \prime 1} \text { furn } \operatorname{waph}_{\text {l }} \text { lest (tor early) }
\end{aligned}
$$

The spectral sequences) of a double complex

the $E_{i}^{p,} Y_{\left(K_{i}^{\prime}\right)} E_{i}^{p r}\left(L^{\bullet},{ }^{\circ}\right)$ cuychule an ithteretinls
Illustration

Ep page
E0 stage
$\begin{array}{cc}E_{0}^{0,3} & E_{0}^{1,3} \\ d_{(0)}^{0,2} & d_{(0)}^{1,2} \\ E_{0}^{0,2} & E_{0}^{1,2}\end{array}$
$E_{0}^{2,3}$
$\left.d_{(0)}^{2,2}\right|_{\uparrow} ^{1}$
$E_{0}^{2,2}$
$E_{0}^{3,3}$
$d_{(0)}^{3,2} \uparrow$
$E_{0}^{3,2}$

$$
E_{1}^{0,3} \xrightarrow{d_{(1)}^{0,3}} E_{1}^{1,3} \xrightarrow{d_{(1)}^{1,3}} E_{1}^{2,3} \xrightarrow{d_{(1)}^{2,3}} E_{1}^{3,3}
$$

$$
E_{1}^{0,2} \xrightarrow{0,2} \xrightarrow{d_{l i 2}^{0,2}} E_{1}^{1,2} \xrightarrow{d_{(1,2}^{1,2}} E_{1}^{2,2} \xrightarrow{d_{(12}^{2,2}} E_{1}^{3,2}
$$

$$
E_{1}^{0,1} \xrightarrow{d_{(1)}^{0,1}} E_{1}^{1,1} \xrightarrow{d_{(1)}^{1,1}} E_{1}^{2,1} \xrightarrow{d_{(1)}^{2,1}} E_{1}^{3,1}
$$

$$
E_{1}^{0,0} \xrightarrow{d_{4,0}^{0.0}} E_{1}^{1,0} \xrightarrow{d_{(1)}^{1,0}} E_{1}^{2,0} \xrightarrow{d_{(1)}^{2,0}} E_{1}^{3,0}
$$

Corollaries of the spectral sequence
corvlly it $K^{+\cdots} \rightarrow L^{\circ}{ }^{\circ}$ is a mophim
of d, bk imples ad $E_{i}^{p l q}(K) \rightarrow E_{i}^{-p_{i}^{2}}(L$
is for ismonohym, the $\operatorname{Tot}\left(K^{00}\right) \Rightarrow F_{0}+\left(L^{\circ}=9\right)$
PF $O \rightarrow$ arsacki $\rightarrow 0 \rightarrow 0$'s a quasi- rirumurpha
PF $0 \rightarrow \dot{\psi} \rightarrow \rightarrow \rightarrow 0$
ofive unnac \Rightarrow middle roticl wrum is a semophism

Corollaries of the spectral sequence
autle Mregras
$\left.C_{0} / d\right) l a y$ le $l+K \cdots$ be a valypux wher
$K p,{ }^{\circ}$,s ncylle deall $p>0$.
Then $K^{*}, 0 \rightarrow \operatorname{Tut}\left(K^{*},{ }^{*}\right)$
is a quasi-1年muphism
(set ism at Elp pase).

Collation of objects in $D(A)$
(wuse jpectel feqmele) N justhty anim
siven a seareu

$$
0 \rightarrow K^{0,0} \rightarrow K^{\prime \prime} \rightarrow
$$

$\backsim R(A)$
it has arell-be Laved Itataination in $D(A)$

What we are going to do with all of this

 otre and rows indee mags of follonin, formin $V(A)$

$$
K^{0} \xrightarrow{0} K^{e} \xrightarrow{1} K^{+} \xrightarrow{0} K^{-14}
$$

(trom simplicinl startres) c) totalizhon is ciy gumsi-rimpto fust colv~n.

