Double complexes

Due to low usage, my Monday evening office hours (8-9pm PDT) will hereafter be by request only, via PM in Zulip. (If you're not on Zulip, use the Google Form on the course website to request access.)

Data Type Declarations

- Basic data types are:
 - `INTEGER` – integer numbers (+/-)
 - `REAL` – floating point numbers
 - `DOUBLE PRECISION` – extended precision floating point
 - `CHARACTER*n` – string with up to n characters
 - `LOGICAL` – takes on values `.TRUE.` or `.FALSE.`
 - `COMPLEX` – complex number

- Integer and Reals can specify number of bytes to use
 - Default is: `INTEGER*4` and `REAL*4`
 - `DOUBLE PRECISION` is same as `REAL*8`

- Arrays of any type must be declared:
 - `DIMENSION A(3,5)` – declares a 3 x 5 array (implicitly REAL)
 - `CHARACTER*30 NAME(50)` – directly declares a character array with 30 character strings in each element

- FORTRAN 90/95 allows user defined types
A picture of a double complex

$A = \text{fixed abelian category}$

- diagram category
- every row and column is a complex

bounded below
Totalization

\[\text{Tot}^\wedge (K^\otimes, \otimes) = \bigoplus K^{p, q} \]

\[d^\wedge = \sum d_1^{p, q} + (1) d_2^{p, q} \]

\[\cdots \rightarrow K^{p, q+1} \xrightarrow{d_1^{p, q+1}} K^{p+1, q+1} \rightarrow \cdots \]

\[\cdots \rightarrow K^{p, q} \xrightarrow{d_2^{p, q}} K^{p+1, q} \rightarrow \cdots \]

\[\cdots \rightarrow K^{p, q} \xrightarrow{d_1^{p, q}} K^{p+1, q} \rightarrow \cdots \]
Interchanging the rows and columns

\[K^{0,-} = \text{double copy of } k \times \text{transpose } L^{0,-} \]

There is normalization \(T_{0,-}(K^{0,-}) \equiv T_{0,-}(L^{0,-}) \)

But identification of \(K^{0,-} \subset T_{0,-} \) with \(L^{0,-} \subset T_{0,-} \) is via multiplication by \((-1)^{\frac{d-1}{2}}\)
Graded commutativity

\[A \in \text{Ring} \] (bounded below)

\[K^0 \] is a \textit{Lie} algebra object in \(\mathcal{D}(A) \).

interpret \(K^0 \otimes K^0 \to K^0 \) as a map of complexes \(L_1 \otimes L_2 \to L_3 \)

via a double complex \(\text{Tot}(L_i \otimes L_j) \to L_3 \)

choosing an orientation (identity) \(\text{Tot}(L_i \otimes L_j) \) with

\(\text{Tot}(L_i \otimes L_j) \)

\(\Rightarrow \) graded commutativity.
The spectral sequence(s) of a double complex

\[E^{p,q}_2 = \text{double complex} \quad \Rightarrow \quad \text{hocolim} \quad \Rightarrow \quad \text{holim} \]

\[E^{p,q}_2 \subset A, \quad d^{p,q}_i : E^{p,q}_i \to E^{p+1, q+1-i}_i \]

1. \[E^0 = E^{p,q}_0 \]

2. \[d^{p,q}_i \text{ form complex} \quad \forall i \]

3. \[d^{p,q}_i = (\text{anti}) \quad \text{for each} \quad i \]

4. \[E^{p,q} \text{ columnwise of} \quad d^{p,q}_i \quad \Rightarrow \quad \text{hocolim} \]

5. \[d^{p,q}_i \text{ are} \quad \text{induced by} \quad d^{p,q}_i \]

6. \[E^{p,q}_\infty = \text{hocolim of} \quad E^{p,q}_2 \]

(1) \[\Rightarrow \quad E^{p,q}_\infty \text{ for} \quad p+q \geq \text{filtration of} \]

\[\Rightarrow \quad (\text{hocolim of} \quad d^{p,q}_i) \]

\[\Rightarrow \quad (\text{holim of} \quad d^{p,q}_i) \]

\[\Rightarrow \quad (\text{hocolim of} \quad d^{p,q}_i) \]
The spectral sequence(s) of a double complex

Moreover, every term is exact:

\[K^{p,q} \rightarrow L^{p,q} \]

Then \(E_1^{p,q}(K^{\ast,\ast}) \rightarrow E_1^{p,q}(L^{\ast,\ast}) \)

compatible with differentials.
Corollaries of the spectral sequence

Corollary: If \(K^{*,*} \rightarrow L^{*,*} \) is a morphism of double complexes and \(E_{i,j}^r(K) \rightarrow E_{i,j}^r(L) \) is an isomorphism, then \(Tot(K^{*,*}) \rightarrow Tot(L^{*,*}) \) is a quasi-isomorphism.

Proof:

\[
\begin{array}{ccccccccc}
0 & \rightarrow & 0 & \rightarrow & 0 & \rightarrow & 0 & \rightarrow & 0 \\
\downarrow & \downarrow \\
0 & \rightarrow & 0 & \rightarrow & 0 & \rightarrow & 0 & \rightarrow & 0 \\
\end{array}
\]

The bottom row gives an exact sequence of kernels and cokernels.
Corollaries of the spectral sequence

Let K^* be a complex where $K^p,^q$ is acyclic for all $p > 0$.

Then K^* → $\text{Tot}(K^p,^q)$ is a quasi-isomorphism.

(set im at E_1 page).
Collation of objects in $D(A)$

(we use spectra if we need N
justify claim)

given a sequence

$0 \to K^n \to K^{n+1} \to \ldots \in D(U)$

it has a well-behaved triangulation

in $D(U)$
What we are going to do with all of this

...