The Forty-Sixth Annual William Lowell Putnam Competition Saturday, December 7, 1985

A–1 Determine, with proof, the number of ordered triples (A_1, A_2, A_3) of sets which have the property that

(i)
$$A_1 \cup A_2 \cup A_3 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, and

(ii) $A_1 \cap A_2 \cap A_3 = \emptyset$.

Express your answer in the form $2^a 3^b 5^c 7^d$, where a, b, c, d are nonnegative integers.

- A-2 Let *T* be an acute triangle. Inscribe a rectangle *R* in *T* with one side along a side of *T*. Then inscribe a rectangle *S* in the triangle formed by the side of *R* opposite the side on the boundary of *T*, and the other two sides of *T*, with one side along the side of *R*. For any polygon *X*, let A(X) denote the area of *X*. Find the maximum value, or show that no maximum exists, of $\frac{A(R)+A(S)}{A(T)}$, where *T* ranges over all triangles and *R*, *S* over all rectangles as above.
- A-3 Let *d* be a real number. For each integer $m \ge 0$, define a sequence $\{a_m(j)\}, j = 0, 1, 2, ...$ by the condition

$$a_m(0) = d/2^m,$$

 $a_m(j+1) = (a_m(j))^2 + 2a_m(j), \qquad j \ge 0.$

Evaluate $\lim_{n\to\infty} a_n(n)$.

- A–4 Define a sequence $\{a_i\}$ by $a_1 = 3$ and $a_{i+1} = 3^{a_i}$ for $i \ge 1$. Which integers between 00 and 99 inclusive occur as the last two digits in the decimal expansion of infinitely many a_i ?
- A-5 Let $I_m = \int_0^{2\pi} \cos(x) \cos(2x) \cdots \cos(mx) dx$. For which integers $m, 1 \le m \le 10$ is $I_m \ne 0$?
- A-6 If $p(x) = a_0 + a_1x + \dots + a_mx^m$ is a polynomial with real coefficients a_i , then set

$$\Gamma(p(x)) = a_0^2 + a_1^2 + \dots + a_m^2.$$

Let $F(x) = 3x^2 + 7x + 2$. Find, with proof, a polynomial g(x) with real coefficients such that

(i)
$$g(0) = 1$$
, and
(ii) $\Gamma(f(x)^n) = \Gamma(g(x)^n)$

for every integer $n \ge 1$.

B–1 Let k be the smallest positive integer for which there exist distinct integers m_1, m_2, m_3, m_4, m_5 such that the polynomial

$$p(x) = (x - m_1)(x - m_2)(x - m_3)(x - m_4)(x - m_5)$$

has exactly k nonzero coefficients. Find, with proof, a set of integers m_1, m_2, m_3, m_4, m_5 for which this minimum k is achieved.

B-2 Define polynomials $f_n(x)$ for $n \ge 0$ by $f_0(x) = 1$, $f_n(0) = 0$ for $n \ge 1$, and

$$\frac{d}{dx}f_{n+1}(x) = (n+1)f_n(x+1)$$

for $n \ge 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.

B-3 Let

be a doubly infinite array of positive integers, and suppose each positive integer appears exactly eight times in the array. Prove that $a_{m,n} > mn$ for some pair of positive integers (m, n).

- B-4 Let *C* be the unit circle $x^2 + y^2 = 1$. A point *p* is chosen randomly on the circumference *C* and another point *q* is chosen randomly from the interior of *C* (these points are chosen independently and uniformly over their domains). Let *R* be the rectangle with sides parallel to the *x* and *y*-axes with diagonal *pq*. What is the probability that no point of *R* lies outside of *C*?
- B-5 Evaluate $\int_0^{\infty} t^{-1/2} e^{-1985(t+t^{-1})} dt$. You may assume that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$.
- B-6 Let *G* be a finite set of real $n \times n$ matrices $\{M_i\}$, $1 \le i \le r$, which form a group under matrix multiplication. Suppose that $\sum_{i=1}^{r} \operatorname{tr}(M_i) = 0$, where $\operatorname{tr}(A)$ denotes the trace of the matrix *A*. Prove that $\sum_{i=1}^{r} M_i$ is the $n \times n$ zero matrix.