The 52nd William Lowell Putnam Mathematical Competition Saturday, December 7, 1991

A-1 A 2×3 rectangle has vertices as $(0,0),(2,0),(0,3)$, and $(2,3)$. It rotates 90° clockwise about the point $(2,0)$. It then rotates 90° clockwise about the point $(5,0)$, then 90° clockwise about the point $(7,0)$, and finally, 90° clockwise about the point $(10,0)$. (The side originally on the x-axis is now back on the x-axis.) Find the area of the region above the x-axis and below the curve traced out by the point whose initial position is $(1,1)$.

A-2 Let \mathbf{A} and \mathbf{B} be different $n \times n$ matrices with real entries. If $\mathbf{A}^{3}=\mathbf{B}^{3}$ and $\mathbf{A}^{2} \mathbf{B}=\mathbf{B}^{2} \mathbf{A}$, can $\mathbf{A}^{2}+\mathbf{B}^{2}$ be invertible?

A-3 Find all real polynomials $p(x)$ of degree $n \geq 2$ for which there exist real numbers $r_{1}<r_{2}<\cdots<r_{n}$ such that

1. $p\left(r_{i}\right)=0, \quad i=1,2, \ldots, n$, and
2. $p^{\prime}\left(\frac{r_{i}+r_{i+1}}{2}\right)=0 \quad i=1,2, \ldots, n-1$,
where $p^{\prime}(x)$ denotes the derivative of $p(x)$.
A-4 Does there exist an infinite sequence of closed discs $D_{1}, D_{2}, D_{3}, \ldots$ in the plane, with centers $c_{1}, c_{2}, c_{3}, \ldots$, respectively, such that
3. the c_{i} have no limit point in the finite plane,
4. the sum of the areas of the D_{i} is finite, and
5. every line in the plane intersects at least one of the D_{i} ?

A-5 Find the maximum value of

$$
\int_{0}^{y} \sqrt{x^{4}+\left(y-y^{2}\right)^{2}} d x
$$

for $0 \leq y \leq 1$.
A-6 Let $A(n)$ denote the number of sums of positive integers

$$
a_{1}+a_{2}+\cdots+a_{r}
$$

which add up to n with

$$
\begin{gathered}
a_{1}>a_{2}+a_{3}, a_{2}>a_{3}+a_{4}, \ldots, \\
a_{r-2}>a_{r-1}+a_{r}, a_{r-1}>a_{r} .
\end{gathered}
$$

Let $B(n)$ denote the number of $b_{1}+b_{2}+\cdots+b_{s}$ which add up to n, with

1. $b_{1} \geq b_{2} \geq \cdots \geq b_{s}$,
2. each b_{i} is in the sequence $1,2,4, \ldots, g_{j}, \ldots$ defined by $g_{1}=1, g_{2}=2$, and $g_{j}=g_{j-1}+g_{j-2}+1$, and
3. if $b_{1}=g_{k}$ then every element in $\left\{1,2,4, \ldots, g_{k}\right\}$ appears at least once as a b_{i}.
Prove that $A(n)=B(n)$ for each $n \geq 1$.
(For example, $A(7)=5$ because the relevant sums are $7,6+1,5+2,4+3,4+2+1$, and $B(7)=5$ because the relevant sums are $4+2+1,2+2+2+1,2+2+1+1+$ $1,2+1+1+1+1+1,1+1+1+1+1+1+1$.)

B-1 For each integer $n \geq 0$, let $S(n)=n-m^{2}$, where m is the greatest integer with $m^{2} \leq n$. Define a sequence $\left(a_{k}\right)_{k=0}^{\infty}$ by $a_{0}=A$ and $a_{k+1}=a_{k}+S\left(a_{k}\right)$ for $k \geq 0$. For what positive integers A is this sequence eventually constant?
B-2 Suppose f and g are non-constant, differentiable, realvalued functions defined on $(-\infty, \infty)$. Furthermore, suppose that for each pair of real numbers x and y,

$$
\begin{aligned}
& f(x+y)=f(x) f(y)-g(x) g(y) \\
& g(x+y)=f(x) g(y)+g(x) f(y)
\end{aligned}
$$

If $f^{\prime}(0)=0$, prove that $(f(x))^{2}+(g(x))^{2}=1$ for all x.
B-3 Does there exist a real number L such that, if m and n are integers greater than L, then an $m \times n$ rectangle may be expressed as a union of 4×6 and 5×7 rectangles, any two of which intersect at most along their boundaries?

B-4 Suppose p is an odd prime. Prove that

$$
\sum_{j=0}^{p}\binom{p}{j}\binom{p+j}{j} \equiv 2^{p}+1 \quad\left(\bmod p^{2}\right)
$$

B-5 Let p be an odd prime and let \mathbb{Z}_{p} denote (the field of) integers modulo p. How many elements are in the set

$$
\left\{x^{2}: x \in \mathbb{Z}_{p}\right\} \cap\left\{y^{2}+1: y \in \mathbb{Z}_{p}\right\} ?
$$

B-6 Let a and b be positive numbers. Find the largest number c, in terms of a and b, such that

$$
a^{x} b^{1-x} \leq a \frac{\sinh u x}{\sinh u}+b \frac{\sinh u(1-x)}{\sinh u}
$$

for all u with $0<|u| \leq c$ and for all $x, 0<x<1$. (Note: $\sinh u=\left(e^{u}-e^{-u}\right) / 2$.)

