The 55th William Lowell Putnam Mathematical Competition
 Saturday, December 3, 1994

A-1 Suppose that a sequence $a_{1}, a_{2}, a_{3}, \ldots$ satisfies $0<a_{n} \leq$ $a_{2 n}+a_{2 n+1}$ for all $n \geq 1$. Prove that the series $\sum_{n=1}^{\infty} a_{n}$ diverges.

A-2 Let A be the area of the region in the first quadrant bounded by the line $y=\frac{1}{2} x$, the x-axis, and the ellipse $\frac{1}{9} x^{2}+y^{2}=1$. Find the positive number m such that A is equal to the area of the region in the first quadrant bounded by the line $y=m x$, the y-axis, and the ellipse $\frac{1}{9} x^{2}+y^{2}=1$.
A-3 Show that if the points of an isosceles right triangle of side length 1 are each colored with one of four colors, then there must be two points of the same color wheh are at least a distance $2-\sqrt{2}$ apart.

A-4 Let A and B be 2×2 matrices with integer entries such that $A, A+B, A+2 B, A+3 B$, and $A+4 B$ are all invertible matrices whose inverses have integer entries. Show that $A+5 B$ is invertible and that its inverse has integer entries.

A-5 Let $\left(r_{n}\right)_{n \geq 0}$ be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} r_{n}=0$. Let S be the set of numbers representable as a sum

$$
r_{i_{1}}+r_{i_{2}}+\cdots+r_{i_{1994}},
$$

with $i_{1}<i_{2}<\cdots<i_{1994}$. Show that every nonempty interval (a, b) contains a nonempty subinterval (c, d) that does not intersect S.

A-6 Let f_{1}, \ldots, f_{10} be bijections of the set of integers such that for each integer n, there is some composition $f_{i_{1}} \circ$ $f_{i_{2}} \circ \cdots \circ f_{i_{m}}$ of these functions (allowing repetitions) which maps 0 to n. Consider the set of 1024 functions

$$
\mathscr{F}=\left\{f_{1}^{e_{1}} \circ f_{2}^{e_{2}} \circ \cdots \circ f_{10}^{e_{10}}\right\}
$$

$e_{i}=0$ or 1 for $1 \leq i \leq 10$. (f_{i}^{0} is the identity function and $f_{i}^{1}=f_{i}$.) Show that if A is any nonempty finite set
of integers, then at most 512 of the functions in \mathscr{F} map A to itself.

B-1 Find all positive integers n that are within 250 of exactly 15 perfect squares.

B-2 For which real numbers c is there a straight line that intersects the curve

$$
x^{4}+9 x^{3}+c x^{2}+9 x+4
$$

in four distinct points?
B-3 Find the set of all real numbers k with the following property: For any positive, differentiable function f that satisfies $f^{\prime}(x)>f(x)$ for all x, there is some number N such that $f(x)>e^{k x}$ for all $x>N$.
B-4 For $n \geq 1$, let d_{n} be the greatest common divisor of the entries of $A^{n}-I$, where

$$
A=\left(\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right) \quad \text { and } \quad I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Show that $\lim _{n \rightarrow \infty} d_{n}=\infty$.
B-5 For any real number α, define the function $f_{\alpha}(x)=$ $\lfloor\alpha x\rfloor$. Let n be a positive integer. Show that there exists an α such that for $1 \leq k \leq n$,

$$
f_{\alpha}^{k}\left(n^{2}\right)=n^{2}-k=f_{\alpha^{k}}\left(n^{2}\right)
$$

B-6 For any integer n, set

$$
n_{a}=101 a-100 \cdot 2^{a} .
$$

Show that for $0 \leq a, b, c, d \leq 99, n_{a}+n_{b} \equiv n_{c}+n_{d}$ $(\bmod 10100)$ implies $\{a, b\}=\{c, d\}$.

