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A–1 The centroid G of the triangle is collinear with H and O
(Euler line), and the centroid lies two-thirds of the way
from A to M. Therefore H is also two-thirds of the way
from A to F , so AF = 15. Since the triangles BFH and
AFC are similar (they’re right triangles and

∠HBC = π/2−∠C = ∠CAF),

we have

BF/FH = AF/FC

or

BF ·FC = FH ·AF = 75.

Now

BC2 = (BF +FC)2 = (BF−FC)2 +4BF ·FC,

but

BF−FC = BM+MF− (MC−MF) = 2MF = 22,

so

BC =
√

222 +4 ·75 =
√

784 = 28.

A–2 We show more precisely that the game terminates with
one player holding all of the pennies if and only if n =
2m+1 or n= 2m+2 for some m. First suppose we are in
the following situation for some k ≥ 2. (Note: for us, a
“move” consists of two turns, starting with a one-penny
pass.)

– Except for the player to move, each player has k
pennies;

– The player to move has at least k pennies.

We claim then that the game terminates if and only if
the number of players is a power of 2. First suppose
the number of players is even; then after m complete
rounds, every other player, starting with the player who
moved first, will have m more pennies than initially, and
the others will all have 0. Thus we are reduced to the
situation with half as many players; by this process, we
eventually reduce to the case where the number of play-
ers is odd. However, if there is more than one player,
after two complete rounds everyone has as many pen-
nies as they did before (here we need m ≥ 2), so the
game fails to terminate. This verifies the claim.

Returning to the original game, note that after one com-
plete round, b n−1

2 c players remain, each with 2 pennies
except for the player to move, who has either 3 or 4 pen-
nies. Thus by the above argument, the game terminates
if and only if b n−1

2 c is a power of 2, that is, if and only
if n = 2m +1 or n = 2m +2 for some m.

A–3 Note that the series on the left is simply xexp(−x2/2).
By integration by parts,∫

∞

0
x2n+1e−x2/2dx = 2n

∫
∞

0
x2n−1e−x2/2dx

and so by induction,∫
∞

0
x2n+1e−x2/2dx = 2×4×·· ·×2n.

Thus the desired integral is simply

∞

∑
n=0

1
2nn!

=
√

e.

A–4 In order to have ψ(x) = aφ(x) for all x, we must in par-
ticular have this for x = e, and so we take a = φ(e)−1.
We first note that

φ(g)φ(e)φ(g−1) = φ(e)φ(g)φ(g−1)

and so φ(g) commutes with φ(e) for all g. Next, we
note that

φ(x)φ(y)φ(y−1x−1) = φ(e)φ(xy)φ(y−1x−1)

and using the commutativity of φ(e), we deduce

φ(e)−1
φ(x)φ(e)−1

φ(y) = φ(e)−1
φ(xy)

or ψ(xy) = ψ(x)ψ(y), as desired.

A–5 We may discard any solutions for which a1 6= a2, since
those come in pairs; so assume a1 = a2. Similarly, we
may assume that a3 = a4, a5 = a6, a7 = a8, a9 = a10.
Thus we get the equation

2/a1 +2/a3 +2/a5 +2/a7 +2/a9 = 1.

Again, we may assume a1 = a3 and a5 = a7, so we get
4/a1+4/a5+2/a9 = 1; and a1 = a5, so 8/a1+2/a9 =
1. This implies that (a1− 8)(a9− 2) = 16, which by
counting has 5 solutions. Thus N10 is odd.

A–6 Clearly xn+1 is a polynomial in c of degree n, so it suf-
fices to identify n values of c for which xn+1 = 0. We
claim these are c = n− 1− 2r for r = 0,1, . . . ,n− 1;
in this case, xk is the coefficient of tk−1 in the polyno-
mial f (t) = (1− t)r(1+ t)n−1−r. This can be verified
by noticing that f satisfies the differential equation

f ′(t)
f (t)

=
n−1− r

1+ t
− r

1− t
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(by logarithmic differentiation) or equivalently,

(1− t2) f ′(t) = f (t)[(n−1− r)(1− t)− r(1+ t)]
= f (t)[(n−1−2r)− (n−1)t]

and then taking the coefficient of tk on both sides:

(k+1)xk+2− (k−1)xk =

(n−1−2r)xk+1− (n−1)xk.

In particular, the largest such c is n−1, and xk =
(n−1

k−1

)
for k = 1,2, . . . ,n.

Greg Kuperberg has suggested an alternate approach to
show directly that c = n−1 is the largest root, without
computing the others. Note that the condition xn+1 = 0
states that (x1, . . . ,xn) is an eigenvector of the matrix

Ai j =

 i j = i+1
n− j j = i−1

0 otherwise

with eigenvalue c. By the Perron-Frobenius theorem,
A has a unique eigenvector with positive entries, whose
eigenvalue has modulus greater than or equal to that of
any other eigenvalue, which proves the claim.

B–1 It is trivial to check that m
6n = { m

6n} ≤ {
m
3n} for 1 ≤

m ≤ 2n, that 1− m
3n = { m

3n} ≤ {
m
6n} for 2n ≤ m ≤ 3n,

that m
3n − 1 = { m

3n} ≤ {
m
6n} for 3n ≤ m ≤ 4n, and that

1− m
6n = { m

6n} ≤ {
m
3n} for 4n ≤ m ≤ 6n. Therefore the

desired sum is

2n−1

∑
m=1

m
6n

+
3n−1

∑
m=2n

(
1− m

3n

)
+

4n−1

∑
m=3n

( m
3n
−1
)
+

6n−1

∑
m=4n

(
1− m

6n

)
= n.

B–2 It suffices to show that | f (x)| is bounded for x≥ 0, since
f (−x) satisfies the same equation as f (x). But then

d
dx

(
( f (x))2 +( f ′(x))2)= 2 f ′(x)( f (x)+ f ′′(x))

=−2xg(x)( f ′(x))2 ≤ 0,

so that ( f (x))2 ≤ ( f (0))2 +( f ′(0))2 for x≥ 0.

B–3 The only such n are the numbers 1–4, 20–24, 100–104,
and 120–124. For the proof let

Hn =
n

∑
m=1

1
m

and introduce the auxiliary function

In = ∑
1≤m≤n,(m,5)=1

1
m
.

It is immediate (e.g., by induction) that In ≡
1,−1,1,0,0 (mod 5) for n≡ 1,2,3,4,5 (mod 5) respec-
tively, and moreover, we have the equality

Hn =
k

∑
m=0

1
5m Ibn/5mc,

where k = k(n) denotes the largest integer such that
5k ≤ n. We wish to determine those n such that the
above sum has nonnegative 5–valuation. (By the 5–
valuation of a number a we mean the largest integer v
such that a/5v is an integer.)

If bn/5kc ≤ 3, then the last term in the above sum
has 5–valuation −k, since I1, I2, I3 each have valua-
tion 0; on the other hand, all other terms must have 5–
valuation strictly larger than −k. It follows that Hn has
5–valuation exactly −k; in particular, Hn has nonneg-
ative 5–valuation in this case if and only if k = 0, i.e.,
n = 1, 2, or 3.

Suppose now that bn/5kc= 4. Then we must also have
20≤ bn/5k−1c ≤ 24. The former condition implies that
the last term of the above sum is I4/5k = 1/(12 ·5k−2),
which has 5–valuation −(k−2).

It is clear that I20 ≡ I24 ≡ 0 (mod 25); hence if bn/5k−1c
equals 20 or 24, then the second–to–last term of the
above sum (if it exists) has valuation at least −(k−
3). The third–to–last term (if it exists) is of the form
Ir/5k−2, so that the sum of the last term and the third to
last term takes the form (Ir +1/12)/5k−2. Since Ir can
be congruent only to 0,1, or -1 (mod 5), and 1/12 ≡ 3
(mod 5), we conclude that the sum of the last term
and third–to–last term has valuation −(k− 2), while
all other terms have valuation strictly higher. Hence
Hn has nonnegative 5–valuation in this case only when
k ≤ 2, leading to the values n = 4 (arising from k = 0),
20,24 (arising from k = 1 and bn/5k−1c = 20 and 24
resp.), 101, 102, 103, and 104 (arising from k = 2,
bn/5k−1c = 20) and 120, 121, 122, 123, and 124 (aris-
ing from k = 2, bn/5k−1c= 24).

Finally, suppose bn/5kc = 4 and bn/5k−1c = 21, 22,
or 23. Then as before, the first condition implies that
the last term of the sum in (*) has valuation −(k− 2),
while the second condition implies that the second–to–
last term in the same sum has valuation−(k−1). Hence
all terms in the sum (*) have 5–valuation strictly higher
than −(k− 1), except for the second–to–last term, and
therefore Hn has 5–valuation −(k− 1) in this case. In
particular, Hn is integral (mod 5) in this case if and only
if k ≤ 1, which gives the additional values n = 21, 22,
and 23.

B–4 Let sk =∑i(−1)iak−1,i be the given sum (note that ak−1,i

is nonzero precisely for i = 0, . . . ,b 2k
3 c). Since

am+1,n = am,n +am,n−1 +am,n−2,
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we have

sk− sk−1 + sk+2 = ∑
i
(−1)i(an−i,i +an−i,i+1 +an−i,i+2)

= ∑
i
(−1)ian−i+1,i+2 = sk+3.

By computing s0 = 1,s1 = 1,s2 = 0, we may easily
verify by induction that s4 j = s4 j+1 = 1 and s4 j+2 =
s4 j+3 = 0 for all j≥ 0. (Alternate solution suggested by
John Rickert: write S(x,y) = ∑

∞
i=0(y+xy2 +x2y3)i, and

note note that sk is the coefficient of yk in S(−1,y) =
(1+ y)/(1− y4).)

B–5 Define the sequence x1 = 2, xn = 2xn−1 for n > 1. It suf-
fices to show that for every n, xm ≡ xm+1 ≡ ·· · (mod n)
for some m < n. We do this by induction on n, with
n = 2 being obvious.

Write n = 2ab, where b is odd. It suffices to show that
xm ≡ ·· · modulo 2a and modulo b, for some m < n.
For the former, we only need xn−1 ≥ a, but clearly
xn−1 ≥ n by induction on n. For the latter, note that
xm ≡ xm+1 ≡ ·· · (mod b) as long as xm−1 ≡ xm ≡ ·· ·
(mod φ(b)), where φ(n) is the Euler totient function.
By hypothesis, this occurs for some m < φ(b)+1 ≤ n.
(Thanks to Anoop Kulkarni for catching a lethal typo in
an earlier version.)

B–6 The answer is 25/13. Place the triangle on the cartesian
plane so that its vertices are at C =(0,0),A=(0,3),B=
(4,0). Define also the points D = (20/13,24/13), and
E = (27/13,0). We then compute that

25
13

= AD = BE = DE

27
13

= BC−CE = BE < BC

39
13

= AC <
√

AC2 +CE2 = AE

40
13

= AB−AD = BD < AB

and that AD < CD. In any dissection of the triangle
into four parts, some two of A,B,C,D,E must belong to
the same part, forcing the least diameter to be at least
25/13.

We now exhibit a dissection with least diameter 25/13.
(Some variations of this dissection are possible.) Put
F = (15/13,19/13), G = (15/13,0), H = (0,19/13),
J = (32/15,15/13), and divide ABC into the convex
polygonal regions ADFH, BEJ, CGFH, DFGEJ. To
check that this dissection has least diameter 25/13, it
suffices (by the following remark) to check that the dis-
tances

AD,AF,AH,BE,BJ,DE,CF,CG,CH,

DF,DG,DH,DJ,EF,EG,EJ,FG,FH,FJ,GJ

are all at most 25/13. This can be checked by a long
numerical calculation, which we omit in favor of some
shortcuts: note that ADFH and BEJ are contained in
circular sectors centered at A and B, respectively, of ra-
dius 25/13 and angle less than π/3, while CGFH is a
rectangle with diameter CF < 25/13.

Remark. The preceding argument uses implicitly the
fact that for P a simple closed polygon in the plane, if
we let S denote the set of points on or within P, then the
maximum distance between two points of S occurs be-
tween some pair of vertices of P. This is an immediate
consequence of the compactness of S (which guarantees
the existence of a maximum) and the convexity of the
function taking (x,y)∈ S×S to the squared distance be-
tween x and y (which is obvious in terms of Cartesian
coordinates).


