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A-1 The centroid G of the triangle is collinear with H and O
(Euler line), and the centroid lies two-thirds of the way
from A to M. Therefore H is also two-thirds of the way
from A to F, so AF = 15. Since the triangles BFH and
AFC are similar (they’re right triangles and

/HBC =1t/2— /C = /CAF),

we have
BF/FH = AF/FC
or
BF -FC=FH-AF =175.
Now

BC* = (BF +FC)?* = (BF — FC)* +-4BF - FC,
but
BF —FC = BM +MF — (MC — MF) = 2MF =22,

N
BC =+/2224+4-75 =784 =28.

A-2 We show more precisely that the game terminates with
one player holding all of the pennies if and only if n =
2™ 41 or n =2"+72 for some m. First suppose we are in
the following situation for some k > 2. (Note: for us, a
“move” consists of two turns, starting with a one-penny

pass.)

— Except for the player to move, each player has k
pennies;

— The player to move has at least k pennies.

We claim then that the game terminates if and only if
the number of players is a power of 2. First suppose
the number of players is even; then after m complete
rounds, every other player, starting with the player who
moved first, will have m more pennies than initially, and
the others will all have 0. Thus we are reduced to the
situation with half as many players; by this process, we
eventually reduce to the case where the number of play-
ers is odd. However, if there is more than one player,
after two complete rounds everyone has as many pen-
nies as they did before (here we need m > 2), so the
game fails to terminate. This verifies the claim.

Returning to the original game, note that after one com-
plete round, L%J players remain, each with 2 pennies
except for the player to move, who has either 3 or 4 pen-
nies. Thus by the above argument, the game terminates
if and only if L”;—lj is a power of 2, that is, if and only
ifn=2"+1orn=2"+42 for some m.

A-3 Note that the series on the left is simply xexp(—x>/2).

By integration by parts,
/mxz”“e"‘z/zdx — /mxzn—le—;@/zdx
0 0

and so by induction,

/ e 2y — 2 x4 .- % 20,
0

Thus the desired integral is simply

=1
Z 2"n!

n=0

- e

A—4 Tn order to have y(x) = a¢(x) for all x, we must in par-
ticular have this for x = e, and so we take a = ¢(e) .
We first note that

P(g)p(e)d(g™") =(e)d(g)o (")

and so ¢(g) commutes with ¢(e) for all g. Next, we
note that

PO x) =d(e)p(xy)o(y 'x )

and using the commutativity of ¢ (e), we deduce
9(e) " 9(x)p(e) "' o() = 9(e) " P (xy)
or Y(xy) = y(x)y(y), as desired.

A-5 We may discard any solutions for which a; # a,, since
those come in pairs; so assume a; = ap. Similarly, we
may assume that a3 = a4, as = ag, a7 = ag, a9 = ajy.
Thus we get the equation

2/ay+2/az+2/as+2/a7+2/ag = 1.

Again, we may assume a; = a3 and as = a7, so we get
4/ay+4/as+2/ag = 1;and a; = as, so 8/a; +2/ag =
1. This implies that (a; — 8)(ag — 2) = 16, which by
counting has 5 solutions. Thus Ny is odd.

A—6 Clearly x,,+; is a polynomial in ¢ of degree n, so it suf-
fices to identify n values of ¢ for which x,4; = 0. We
claim these are c=n—1—-2r for r =0,1,...,n—1;
in this case, xy is the coefficient of ~! in the polyno-
mial f(t) = (1 —#)"(141¢)""'=". This can be verified
by noticing that f satisfies the differential equation

fie) n—=1—r r
fo)  1+r 11—t




(by logarithmic differentiation) or equivalently,

(L= f' (1) = fO)[(n=1=r)(1—1) = r(1+1)]
=fOl(n=1=2r)=(n—1)]

and then taking the coefficient of #* on both sides:

(k+ Dxiz — (k—1)xe =
(n—1=2r)xp41 — (n—1)xg.

In particular, the largest such ¢ is n — 1, and x; = (’Z:})
fork=1,2,....n

Greg Kuperberg has suggested an alternate approach to
show directly that ¢ = n— 1 is the largest root, without
computing the others. Note that the condition x| =0
states that (xj,...,x,) is an eigenvector of the matrix

i j=i+1
A,’j: n—j j:i—l
0  otherwise

with eigenvalue c. By the Perron-Frobenius theorem,
A has a unique eigenvector with positive entries, whose
eigenvalue has modulus greater than or equal to that of
any other eigenvalue, which proves the claim.

It is trivial to check that 2t = {£} < {{}} for 1 <
m < 2n, that 1 — 5+ = {3’1}<{6 }f0r2n<m<3n
that - — 1 = {5 }<{ "~} for 3n < m < 4n, and that
1—5—{6”}§{ }f0r4n§m§6n Therefore the
desired sum is

2n—1 3n—1
Lo L5
Jr4n21 (771)+6n211 (177>

m=3n

B-2 It suffices to show that | f(x)| is bounded for x > 0, since

f(—x) satisfies the same equation as f(x). But then

4 ((F)? + (' (0)%) =2 () (f(x) + " (x))

dx
= —2xg(x)(f'(x))* <0,

so that (£(x))? < (£(0))* + (f(0))? for x > 0.

B-3 The only such n are the numbers 1-4, 20-24, 100-104,

and 120-124. For the proof let
~y L
m=1"

and introduce the auxiliary function

1

1<m<n,(m,5)=

It is immediate (e.g., by induction) that I, =
1,0,0 (mod 5) forn=1,2,3,4,5 (mod 5) respec-
tively, and moreover, we have the equality

|
Hy =Y slinsm)s

m=0

where k = k(n) denotes the largest integer such that
5K <'n. We wish to determine those n such that the
above sum has nonnegative 5—valuation. (By the 5—
valuation of a number a we mean the largest integer v
such that a/5" is an integer.)

If |n/5F] < 3, then the last term in the above sum
has 5-valuation —k, since I;, I», I3 each have valua-
tion 0; on the other hand, all other terms must have 5—
valuation strictly larger than —k. It follows that H,, has
S5—valuation exactly —k; in particular, H, has nonneg-
ative 5—valuation in this case if and only if k =0, i.e.,
n=1,2,or3.

Suppose now that |n/5 | = 4. Then we must also have
20< |n/ Sk’lj < 24. The former condition implies that
the last term of the above sum is Iy /5F = 1/(12-5¢72),
which has 5—valuation —(k —2).

It is clear that Iy = L4 = 0 (mod 25); hence if [n/5%!]
equals 20 or 24, then the second—-to-last term of the
above sum (if it exists) has valuation at least —(k —
3). The third-to-last term (if it exists) is of the form
I,/ 5%=2 50 that the sum of the last term and the third to
last term takes the form (I, + 1/12)/5¥=2. Since I, can
be congruent only to 0,1, or -1 (mod 5), and 1/12 =3
(mod 5), we conclude that the sum of the last term
and third-to-last term has valuation —(k — 2), while
all other terms have valuation strictly higher. Hence
H, has nonnegative 5—valuation in this case only when
k < 2, leading to the values n = 4 (arising from k = 0),
20,24 (arising from k = 1 and [n/5*"'] =20 and 24
resp.), 101, 102, 103, and 104 (arising from k = 2,
|n/551| = 20) and 120, 121, 122, 123, and 124 (aris-
ing from k =2, |n/5F"1| = 24).

Finally, suppose |n/5%| =4 and [n/5*'| = 21, 22,
or 23. Then as before, the first condition implies that
the last term of the sum in (*) has valuation —(k — 2),
while the second condition implies that the second—to—
last term in the same sum has valuation —(k—1). Hence
all terms in the sum (*) have 5—valuation strictly higher
than —(k — 1), except for the second—to—last term, and
therefore H, has 5-valuation —(k — 1) in this case. In
particular, H,, is integral (mod 5) in this case if and only
if kK < 1, which gives the additional values n = 21, 22,
and 23.

B—4 Let sy =Y;(—1)'ax_1, be the given sum (note that a1 ;

is nonzero precisely fori =0,...,| % |). Since

Am+10 = Qmp T Anp—1 1 Amn—2,



we have

Sk = Sk—1 + k2 = 3 (= 1) (an—ii + Gnijip1 + aniit2)
i

= Z(—l)ian7i+1,i+z = Sk43-
i

By computing so = 1,51 = 1,50 = 0, we may easily
verify by induction that s4; = s4j41 = 1 and s4j40 =
s4j43 =0forall j > 0. (Alternate solution suggested by
John Rickert: write S(x,y) = Y= o (y +xy* +x%y*)/, and
note note that sy is the coefficient of y* in S(—1,y) =
(1+y)/(1=y*).)

B-5 Define the sequence x| = 2, x, = 2*-1 for n > 1. It suf-

fices to show that for every n, x,, = xp+1 =--- (mod n)
for some m < n. We do this by induction on n, with
n = 2 being obvious.

Write n = 2b, where b is odd. It suffices to show that
X, = --- modulo 24 and modulo b, for some m < n.
For the former, we only need x,_; > a, but clearly
Xp,—1 > n by induction on n. For the latter, note that
Xm = Xm1 = --- (mod b) as long as xp—] =X = -+
(mod ¢ (b)), where ¢(n) is the Euler totient function.
By hypothesis, this occurs for some m < ¢(b) +1 < n.
(Thanks to Anoop Kulkarni for catching a lethal typo in
an earlier version.)

B—6 The answer is 25/13. Place the triangle on the cartesian

plane so that its vertices are at C = (0,0),A = (0,3),B=
(4,0). Define also the points D = (20/13,24/13), and
E = (27/13,0). We then compute that

25

— =AD=BE =DE

13

27

EzBC—CE:BE<BC

39

IE =AC < VAC?+CE? =AE
40

IE] =AB—-AD =BD < AB

and that AD < CD. In any dissection of the triangle
into four parts, some two of A, B,C, D, E must belong to
the same part, forcing the least diameter to be at least
25/13.

We now exhibit a dissection with least diameter 25/13.
(Some variations of this dissection are possible.) Put
F = (15/13,19/13), G = (15/13,0), H = (0,19/13),
J =(32/15,15/13), and divide ABC into the convex
polygonal regions ADFH, BEJ, CGFH, DFGEJ. To
check that this dissection has least diameter 25/13, it
suffices (by the following remark) to check that the dis-
tances

AD,AF,AH,BE,BJ,DE,CF,CG,CH,
DF,DG,DH,DJ,EF,EG,EJ,FG,FH,FJ,GJ

are all at most 25/13. This can be checked by a long
numerical calculation, which we omit in favor of some
shortcuts: note that ADFH and BEJ are contained in
circular sectors centered at A and B, respectively, of ra-
dius 25/13 and angle less than 7/3, while CGFH is a
rectangle with diameter CF < 25/13.

Remark. The preceding argument uses implicitly the
fact that for P a simple closed polygon in the plane, if
we let S denote the set of points on or within P, then the
maximum distance between two points of S occurs be-
tween some pair of vertices of P. This is an immediate
consequence of the compactness of S (which guarantees
the existence of a maximum) and the convexity of the
function taking (x,y) € S X S to the squared distance be-
tween x and y (which is obvious in terms of Cartesian
coordinates).



