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A–1 Consider the plane containing both the axis of the cone
and two opposite vertices of the cube’s bottom face.
The cross section of the cone and the cube in this plane
consists of a rectangle of sides s and s

√
2 inscribed in

an isosceles triangle of base 2 and height 3, where s is
the side-length of the cube. (The s

√
2 side of the rect-

angle lies on the base of the triangle.) Similar triangles
yield s/3 = (1− s

√
2/2)/1, or s = (9

√
2−6)/7.

A–2 First solution: to fix notation, let A be the area of re-
gion DEFG, and B be the area of DEIH; further let C
denote the area of sector ODE, which only depends on
the arc length of s. If [XY Z] denotes the area of trian-
gle [XY Z], then we have A = C+ [OEG]− [ODF ] and
B = C + [ODH]− [OEI]. But clearly [OEG] = [OEI]
and [ODF ] = [ODH], and so A+B = 2C.
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Second solution: We may parametrize a point in s by
any of x, y, or θ = tan−1(y/x). Then A and B are just the
integrals of ydx and xdy over the appropriate intervals;
thus A+B is the integral of xdy− ydx (minus because
the limits of integration are reversed). But dθ = xdy−
ydx, and so A+B = ∆θ is precisely the radian measure
of s. (Of course, one can perfectly well do this problem
by computing the two integrals separately. But what’s
the fun in that?)

A–3 If at least one of f (a), f ′(a), f ′′(a), or f ′′′(a) vanishes
at some point a, then we are done. Hence we may as-
sume each of f (x), f ′(x), f ′′(x), and f ′′′(x) is either
strictly positive or strictly negative on the real line. By
replacing f (x) by − f (x) if necessary, we may assume
f ′′(x) > 0; by replacing f (x) by f (−x) if necessary,
we may assume f ′′′(x)> 0. (Notice that these substitu-
tions do not change the sign of f (x) f ′(x) f ′′(x) f ′′′(x).)
Now f ′′(x) > 0 implies that f ′(x) is increasing, and
f ′′′(x) > 0 implies that f ′(x) is convex, so that f ′(x+
a)> f ′(x)+a f ′′(x) for all x and a. By letting a increase
in the latter inequality, we see that f ′(x+ a) must be
positive for sufficiently large a; it follows that f ′(x)> 0

for all x. Similarly, f ′(x)> 0 and f ′′(x)> 0 imply that
f (x)> 0 for all x. Therefore f (x) f ′(x) f ′′(x) f ′′′(x)> 0
for all x, and we are done.

A–4 The number of digits in the decimal expansion of An is
the Fibonacci number Fn, where F1 = 1, F2 = 1, and
Fn = Fn−1 + Fn−2 for n > 2. It follows that the se-
quence {An}, modulo 11, satisfies the recursion An =
(−1)Fn−2An−1 +An−2. (Notice that the recursion for An
depends only on the value of Fn−2 modulo 2.) Using
these recursions, we find that A7≡ 0 and A8≡ 1 modulo
11, and that F7 ≡ 1 and F8 ≡ 1 modulo 2. It follows that
An ≡ An+6 (mod 11) for all n ≥ 1. We find that among
A1,A2,A3,A4,A5, and A6, only A1 vanishes modulo 11.
Thus 11 divides An if and only if n = 6k+ 1 for some
nonnegative integer k.

A–5 Define the sequence Di by the following greedy algo-
rithm: let D1 be the disc of largest radius (breaking ties
arbitrarily), let D2 be the disc of largest radius not meet-
ing D1, let D3 be the disc of largest radius not meeting
D1 or D2, and so on, up to some final disc Dn. To see
that E ⊆∪n

j=13D j, consider a point in E; if it lies in one
of the Di, we are done. Otherwise, it lies in a disc D of
radius r, which meets one of the Di having radius s≥ r
(this is the only reason a disc can be skipped in our al-
gorithm). Thus the centers lie at a distance t < s+r, and
so every point at distance less than r from the center of
D lies at distance at most r+ t < 3s from the center of
the corresponding Di.

A–6 Recall the inequalities |AB|2+ |BC|2≥ 2|AB||BC| (AM-
GM) and |AB||BC| ≥ 2[ABC] (Law of Sines). Also re-
call that the area of a triangle with integer coordinates
is half an integer (if its vertices lie at (0,0),(p,q),(r,s),
the area is |ps−qr|/2), and that if A and B have integer
coordinates, then |AB|2 is an integer (Pythagoras). Now
observe that

8[ABC]≤ |AB|2 + |BC|2 +4[ABC]

≤ |AB|2 + |BC|2 +2|AB||BC|
< 8[ABC]+1,

and that the first and second expressions are both in-
tegers. We conclude that 8[ABC] = |AB|2 + |BC|2 +
4[ABC], and so |AB|2 + |BC|2 = 2|AB||BC| = 4[ABC];
that is, B is a right angle and AB = BC, as desired.

B–1 Notice that

(x+1/x)6− (x6 +1/x6)−2
(x+1/x)3 +(x3 +1/x3)

=

(x+1/x)3− (x3 +1/x3) = 3(x+1/x)
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(difference of squares). The latter is easily seen (e.g., by
AM-GM) to have minimum value 6 (achieved at x = 1).

B–2 Consider a triangle as described by the problem; label
its vertices A,B,C so that A= (a,b), B lies on the x-axis,
and C lies on the line y = x. Further let D = (a,−b) be
the reflection of A in the x-axis, and let E = (b,a) be
the reflection of A in the line y = x. Then AB = DB and
AC = CE, and so the perimeter of ABC is DB+BC +

CE ≥ DE =
√

(a−b)2 +(a+b)2 =
√

2a2 +2b2. It is
clear that this lower bound can be achieved; just set B
(resp. C) to be the intersection between the segment
DE and the x-axis (resp. line x = y); thus the minimum
perimeter is in fact

√
2a2 +2b2.

B–3 We use the well-known result that the surface area of
the “sphere cap” {(x,y,z) |x2 + y2 + z2 = 1, z ≥ z0} is
simply 2π(1− z0). (This result is easily verified using
calculus; we omit the derivation here.) Now the desired
surface area is just 2π minus the surface areas of five
identical halves of sphere caps; these caps, up to isome-
try, correspond to z0 being the distance from the center
of the pentagon to any of its sides, i.e., z0 = cos π

5 . Thus
the desired area is 2π− 5

2

(
2π(1− cos π

5 )
)
= 5π cos π

5 −
3π (i.e., B = π/2).

B–4 For convenience, define fm,n(i) = b i
mc+ b

i
nc, so that

the given sum is S(m,n) = ∑
mn−1
i=0 (−1) fm,n(i). If m and

n are both odd, then S(m,n) is the sum of an odd num-
ber of ±1’s, and thus cannot be zero. Now consider
the case where m and n have opposite parity. Note that
b i

mc+ bk−
i+1
m c = k− 1 for all integers i,k,m. Thus

b i
mc+ b

mn−i−1
m c = n− 1 and b i

nc+ b
mn−i−1

n c = m− 1;
this implies that fm,n(i)+ fm,n(mn− i−1) =m+n−2 is
odd, and so (−1) fm,n(i) =−(−1) fm,n(mn−i−1) for all i. It
follows that S(m,n) = 0 if m and n have opposite parity.

Now suppose that m = 2k and n = 2l are both even.
Then b 2 j

2mc= b
2 j+1

2m c for all j, so S can be computed as
twice the sum over only even indices:

S(2k,2l) = 2
2kl−1

∑
i=0

(−1) fk,l(i) = S(k, l)(1+(−1)k+l).

Thus S(2k,2l) vanishes if and only if S(k, l) vanishes (if
1+(−1)k+l = 0, then k and l have opposite parity and
so S(k, l) also vanishes).

Piecing our various cases together, we easily deduce
that S(m,n) = 0 if and only if the highest powers of 2
dividing m and n are different.

B–5 Write N = (101998−1)/9. Then

√
N =

10999

3

√
1−10−1998

=
10999

3
(1− 1

2
10−1998 + r),

where r < 10−2000. Now the digits after the decimal
point of 10999/3 are given by .3333 . . ., while the dig-
its after the decimal point of 1

6 10−999 are given by
.00000 . . .1666666 . . .. It follows that the first 1000 dig-
its of

√
N are given by .33333 . . .3331; in particular, the

thousandth digit is 1.

B–6 First solution: Write p(n) = n3 + an2 + bn+ c. Note
that p(n) and p(n+ 2) have the same parity, and recall
that any perfect square is congruent to 0 or 1 (mod 4).
Thus if p(n) and p(n+ 2) are perfect squares, they are
congruent mod 4. But p(n+2)− p(n)≡ 2n2+2b (mod
4), which is not divisible by 4 if n and b have opposite
parity.

Second solution: We prove more generally that for any
polynomial P(z) with integer coefficients which is not
a perfect square, there exists a positive integer n such
that P(n) is not a perfect square. Of course it suffices
to assume P(z) has no repeated factors, which is to say
P(z) and its derivative P′(z) are relatively prime.

In particular, if we carry out the Euclidean algorithm
on P(z) and P′(z) without dividing, we get an integer
D (the discriminant of P) such that the greatest com-
mon divisor of P(n) and P′(n) divides D for any n.
Now there exist infinitely many primes p such that p
divides P(n) for some n: if there were only finitely
many, say, p1, . . . , pk, then for any n divisible by m =
P(0)p1 p2 · · · pk, we have P(n)≡ P(0) (mod m), that is,
P(n)/P(0) is not divisible by p1, . . . , pk, so must be±1,
but then P takes some value infinitely many times, con-
tradiction. In particular, we can choose some such p not
dividing D, and choose n such that p divides P(n). Then
P(n+kp)≡ P(n)+kpP′(n)(mod p) (write out the Tay-
lor series of the left side); in particular, since p does not
divide P′(n), we can find some k such that P(n+ kp)
is divisible by p but not by p2, and so is not a perfect
square.

Third solution: (from David Rusin, David Savitt, and
Richard Stanley independently) Assume that n3+an2+
bn+ c is a square for all n > 0. For sufficiently large n,

(n3/2 +
1
2

an1/2−1)2 < n3 +an2 +bn+ c

< (n3/2 +
1
2

an1/2 +1)2;

thus if n is a large even perfect square, we have n3 +
an2+bn+c = (n3/2+ 1

2 an1/2)2. We conclude this is an
equality of polynomials, but the right-hand side is not a
perfect square for n an even non-square, contradiction.
(The reader might try generalizing this approach to ar-
bitrary polynomials. A related argument, due to Greg
Kuperberg: write

√
n3 +an2 +bn+ c as n3/2 times a

power series in 1/n and take two finite differences to
get an expression which tends to 0 as n→∞, contradic-
tion.)

Note: in case n3 +an2 +bn+ c has no repeated factors,
it is a square for only finitely many n, by a theorem
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of Siegel; work of Baker gives an explicit (but large)
bound on such n. (I don’t know whether the graders
will accept this as a solution, though.)


