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A–1 Note that if r(x) and s(x) are any two functions, then

max(r,s) = (r+ s+ |r− s|)/2.

Therefore, if F(x) is the given function, we have

F(x) = max{−3x−3,0}−max{5x,0}+3x+2
= (−3x−3+ |3x+3|)/2
− (5x+ |5x|)/2+3x+2

= |(3x+3)/2|− |5x/2|− x+
1
2
,

so we may set f (x) = (3x + 3)/2, g(x) = 5x/2, and
h(x) =−x+ 1

2 .

A–2 First solution: First factor p(x) = q(x)r(x), where q has
all real roots and r has all complex roots. Notice that
each root of q has even multiplicity, otherwise p would
have a sign change at that root. Thus q(x) has a square
root s(x).

Now write r(x) = ∏
k
j=1(x− a j)(x− a j) (possible be-

cause r has roots in complex conjugate pairs). Write
∏

k
j=1(x−a j) = t(x)+ iu(x) with t,x having real coeffi-

cients. Then for x real,

p(x) = q(x)r(x)

= s(x)2(t(x)+ iu(x))(t(x)+ iu(x))

= (s(x)t(x))2 +(s(x)u(x))2.

(Alternatively, one can factor r(x) as a product of
quadratic polynomials with real coefficients, write each
as a sum of squares, then multiply together to get a sum
of many squares.)

Second solution: We proceed by induction on the de-
gree of p, with base case where p has degree 0. As in
the first solution, we may reduce to a smaller degree in
case p has any real roots, so assume it has none. Then
p(x)> 0 for all real x, and since p(x)→∞ for x→±∞,
p has a minimum value c. Now p(x)− c has real roots,
so as above, we deduce that p(x)−c is a sum of squares.
Now add one more square, namely (

√
c)2, to get p(x)

as a sum of squares.

A–3 First solution: Computing the coefficient of xn+1 in the
identity (1− 2x− x2)∑

∞
m=0 amxm = 1 yields the recur-

rence an+1 = 2an + an−1; the sequence {an} is then
characterized by this recurrence and the initial condi-
tions a0 = 1,a1 = 2.

Define the sequence {bn} by b2n = a2
n−1 +a2

n, b2n+1 =

an(an−1 +an+1). Then

2b2n+1 +b2n = 2anan+1 +2an−1an +a2
n−1 +a2

n

= 2anan+1 +an−1an+1 +a2
n

= a2
n+1 +a2

n = b2n+2,

and similarly 2b2n + b2n−1 = b2n+1, so that {bn} satis-
fies the same recurrence as {an}. Since further b0 =
1,b1 = 2 (where we use the recurrence for {an} to cal-
culate a−1 = 0), we deduce that bn = an for all n. In
particular, a2

n +a2
n+1 = b2n+2 = a2n+2.

Second solution: Note that

1
1−2x− x2

=
1

2
√

2

( √
2+1

1− (1+
√

2)x
+

√
2−1

1− (1−
√

2)x

)

and that

1
1+(1±

√
2)x

=
∞

∑
n=0

(1±
√

2)nxn,

so that

an =
1

2
√

2

(
(
√

2+1)n+1− (1−
√

2)n+1
)
.

A simple computation (omitted here) now shows that
a2

n +a2
n+1 = a2n+2.

Third solution (by Richard Stanley): Let A be the matrix(
0 1
1 2

)
. A simple induction argument shows that

An+2 =

(
an an+1

an+1 an+2

)
.

The desired result now follows from comparing the top
left corner entries of the equality An+2An+2 = A2n+4.

A–4 Denote the series by S, and let an = 3n/n. Note that

S =
∞

∑
m=1

∞

∑
n=1

1
am(am +an)

=
∞

∑
m=1

∞

∑
n=1

1
an(am +an)

,

where the second equality follows by interchanging m
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and n. Thus

2S = ∑
m

∑
n

(
1

am(am +an)
+

1
an(am +an)

)
= ∑

m
∑
n

1
aman

=

(
∞

∑
n=1

n
3n

)2

.

But
∞

∑
n=1

n
3n =

3
4

since, e.g., it’s f ′(1), where

f (x) =
∞

∑
n=0

xn

3n =
3

3− x
,

and we conclude that S = 9/32.

A–5 First solution: (by Reid Barton) Let r1, . . . ,r1999 be the
roots of P. Draw a disc of radius ε around each ri,
where ε < 1/3998; this disc covers a subinterval of
[−1/2,1/2] of length at most 2ε , and so of the 2000 (or
fewer) uncovered intervals in [−1/2,1/2], one, which
we call I, has length at least δ = (1−3998ε)/2000 > 0.
We will exhibit an explicit lower bound for the integral
of |P(x)|/P(0) over this interval, which will yield such
a bound for the entire integral.
Note that

|P(x)|
|P(0)|

=
1999

∏
i=1

|x− ri|
|ri|

.

Also note that by construction, |x− ri| ≥ ε for each x ∈
I. If |ri| ≤ 1, then we have |x−ri|

|ri| ≥ ε . If |ri|> 1, then

|x− ri|
|ri|

= |1− x/ri| ≥ 1−|x/ri| ≥= 1/2 > ε.

We conclude that
∫

I |P(x)/P(0)|dx ≥ δε , independent
of P.
Second solution: It will be a bit more convenient to
assume P(0) = 1 (which we may achieve by rescal-
ing unless P(0) = 0, in which case there is nothing to
prove) and to prove that there exists D > 0 such that∫ 1
−1 |P(x)|dx≥ D, or even such that

∫ 1
0 |P(x)|dx≥ D.

We first reduce to the case where P has all of its roots
in [0,1]. If this is not the case, we can factor P(x) as
Q(x)R(x), where Q has all roots in the interval and R has
none. Then R is either always positive or always neg-
ative on [0,1]; assume the former. Let k be the largest
positive real number such that R(x)− kx ≥ 0 on [0,1];
then∫ 1

−1
|P(x)|dx =

∫ 1

−1
|Q(x)R(x)|dx

>
∫ 1

−1
|Q(x)(R(x)− kx)|dx,

and Q(x)(R(x)−kx) has more roots in [0,1] than does P
(and has the same value at 0). Repeating this argument
shows that

∫ 1
0 |P(x)|dx is greater than the correspond-

ing integral for some polynomial with all of its roots in
[0,1].

Under this assumption, we have

P(x) = c
1999

∏
i=1

(x− ri)

for some ri ∈ (0,1]. Since

P(0) =−c∏ri = 1,

we have

|c| ≥∏ |r−1
i | ≥ 1.

Thus it suffices to prove that if Q(x) is a monic polyno-
mial of degree 1999 with all of its roots in [0,1], then∫ 1

0 |Q(x)|dx ≥ D for some constant D > 0. But the in-
tegral of

∫ 1
0 ∏

1999
i=1 |x− ri|dx is a continuous function for

ri ∈ [0,1]. The product of all of these intervals is com-
pact, so the integral achieves a minimum value for some
ri. This minimum is the desired D.

Third solution (by Abe Kunin): It suffices to prove the
stronger inequality

sup
x∈[−1,1]

|P(x)| ≤C
∫ 1

−1
|P(x)|dx

holds for some C. But this follows immediately from
the following standard fact: any two norms on a finite-
dimensional vector space (here the polynomials of de-
gree at most 1999) are equivalent. (The proof of this
statement is also a compactness argument: C can be
taken to be the maximum of the L1-norm divided by
the sup norm over the set of polynomials with L1-norm
1.)

Note: combining the first two approaches gives a con-
structive solution with a constant that is better than that
given by the first solution, but is still far from optimal. I
don’t know offhand whether it is even known what the
optimal constant and/or the polynomials achieving that
constant are.

A–6 Rearranging the given equation yields the much more
tractable equation

an

an−1
= 6

an−1

an−2
−8

an−2

an−3
.

Let bn = an/an−1; with the initial conditions b2 =
2,b3 = 12, one easily obtains bn = 2n−1(2n−2−1), and
so

an = 2n(n−1)/2
n−1

∏
i=1

(2i−1).
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To see that n divides an, factor n as 2km, with m odd.
Then note that k≤ n≤ n(n−1)/2, and that there exists
i ≤ m− 1 such that m divides 2i− 1, namely i = φ(m)
(Euler’s totient function: the number of integers in
{1, . . . ,m} relatively prime to m).

B–1 The answer is 1/3. Let G be the point obtained by re-
flecting C about the line AB. Since ∠ADC = π−θ

2 , we
find that ∠BDE = π − θ −∠ADC = π−θ

2 = ∠ADC =
π −∠BDC = π −∠BDG, so that E,D,G are collinear.
Hence

|EF |= |BE|
|BC|

=
|BE|
|BG|

=
sin(θ/2)

sin(3θ/2)
,

where we have used the law of sines in4BDG. But by
l’Hôpital’s Rule,

lim
θ→0

sin(θ/2)
sin(3θ/2)

= lim
θ→0

cos(θ/2)
3cos(3θ/2)

= 1/3.

B–2 First solution: Suppose that P does not have n dis-
tinct roots; then it has a root of multiplicity at least 2,
which we may assume is x = 0 without loss of general-
ity. Let xk be the greatest power of x dividing P(x), so
that P(x) = xkR(x) with R(0) 6= 0; a simple computation
yields

P′′(x) = (k2− k)xk−2R(x)+2kxk−1R′(x)+ xkR′′(x).

Since R(0) 6= 0 and k ≥ 2, we conclude that the great-
est power of x dividing P′′(x) is xk−2. But P(x) =
Q(x)P′′(x), and so x2 divides Q(x). We deduce (since Q
is quadratic) that Q(x) is a constant C times x2; in fact,
C = 1/(n(n− 1)) by inspection of the leading-degree
terms of P(x) and P′′(x).

Now if P(x) = ∑
n
j=0 a jx j, then the relation P(x) =

Cx2P′′(x) implies that a j =C j( j−1)a j for all j; hence
a j = 0 for j≤ n−1, and we conclude that P(x) = anxn,
which has all identical roots.

Second solution (by Greg Kuperberg): Let f (x) =
P′′(x)/P(x) = 1/Q(x). By hypothesis, f has at most
two poles (counting multiplicity).

Recall that for any complex polynomial P, the roots of
P′ lie within the convex hull of P. To show this, it suf-
fices to show that if the roots of P lie on one side of a
line, say on the positive side of the imaginary axis, then
P′ has no roots on the other side. That follows because
if r1, . . . ,rn are the roots of P,

P′(z)
P(z)

=
n

∑
i=1

1
z− ri

and if z has negative real part, so does 1/(z− ri) for
i = 1, . . . ,n, so the sum is nonzero.

The above argument also carries through if z lies on the
imaginary axis, provided that z is not equal to a root of

P. Thus we also have that no roots of P′ lie on the sides
of the convex hull of P, unless they are also roots of P.

From this we conclude that if r is a root of P which is
a vertex of the convex hull of the roots, and which is
not also a root of P′, then f has a single pole at r (as r
cannot be a root of P′′). On the other hand, if r is a root
of P which is also a root of P′, it is a multiple root, and
then f has a double pole at r.

If P has roots not all equal, the convex hull of its roots
has at least two vertices.

B–3 We first note that

∑
m,n>0

xmyn =
xy

(1− x)(1− y)
.

Subtracting S from this gives two sums, one of which is

∑
m≥2n+1

xmyn = ∑
n

yn x2n+1

1− x
=

x3y
(1− x)(1− x2y)

and the other of which sums to xy3/[(1− y)(1− xy2)].
Therefore

S(x,y) =
xy

(1− x)(1− y)
− x3y

(1− x)(1− x2y)

− xy3

(1− y)(1− xy2)

=
xy(1+ x+ y+ xy− x2y2)

(1− x2y)(1− xy2)

and the desired limit is

lim
(x,y)→(1,1)

xy(1+ x+ y+ xy− x2y2) = 3.

B–4 (based on work by Daniel Stronger) We make repeated
use of the following fact: if f is a differentiable function
on all of R, limx→−∞ f (x) ≥ 0, and f ′(x) > 0 for all
x ∈ R, then f (x) > 0 for all x ∈ R. (Proof: if f (y) < 0
for some x, then f (x)< f (y) for all x < y since f ′ > 0,
but then limx→−∞ f (x)≤ f (y)< 0.)

From the inequality f ′′′(x)≤ f (x) we obtain

f ′′ f ′′′(x)≤ f ′′(x) f (x)< f ′′(x) f (x)+ f ′(x)2

since f ′(x) is positive. Applying the fact to the differ-
ence between the right and left sides, we get

1
2
( f ′′(x))2 < f (x) f ′(x). (1)

On the other hand, since f (x) and f ′′′(x) are both posi-
tive for all x, we have

2 f ′(x) f ′′(x)< 2 f ′(x) f ′′(x)+2 f (x) f ′′′(x).

Applying the fact to the difference between the sides
yields

f ′(x)2 ≤ 2 f (x) f ′′(x). (2)
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Combining (1) and (2), we obtain

1
2

(
f ′(x)2

2 f (x)

)2

<
1
2
( f ′′(x))2

< f (x) f ′(x),

or ( f ′(x))3 < 8 f (x)3. We conclude f ′(x) < 2 f (x), as
desired.
Note: one can actually prove the result with a smaller
constant in place of 2, as follows. Adding 1

2 f ′(x) f ′′′(x)
to both sides of (1) and again invoking the original
bound f ′′′(x)≤ f (x), we get

1
2
[ f ′(x) f ′′′(x)+( f ′′(x))2]< f (x) f ′(x)+

1
2

f ′(x) f ′′′(x)

≤ 3
2

f (x) f ′(x).

Applying the fact again, we get

1
2

f ′(x) f ′′(x)<
3
4

f (x)2.

Multiplying both sides by f ′(x) and applying the fact
once more, we get

1
6
( f ′(x))3 <

1
4

f (x)3.

From this we deduce f ′(x)< (3/2)1/3 f (x)< 2 f (x), as
desired.
I don’t know what the best constant is, except that it
is not less than 1 (because f (x) = ex satisfies the given
conditions).

B–5 First solution: We claim that the eigenvalues of A are
0 with multiplicity n−2, and n/2 and −n/2, each with
multiplicity 1. To prove this claim, define vectors v(m),
0≤ m≤ n−1, componentwise by (v(m))k = eikmθ , and
note that the v(m) form a basis for Cn. (If we arrange the
v(m) into an n× n matrix, then the determinant of this
matrix is a Vandermonde product which is nonzero.)
Now note that

(Av(m)) j =
n

∑
k=1

cos( jθ + kθ)eikmθ

=
ei jθ

2

n

∑
k=1

eik(m+1)θ +
e−i jθ

2

n

∑
k=1

eik(m−1)θ .

Since ∑
n
k=1 eik`θ = 0 for integer ` unless n |`, we

conclude that Av(m) = 0 for m = 0 or for 2 ≤
m ≤ n − 1. In addition, we find that (Av(1)) j =
n
2 e−i jθ = n

2 (v
(n−1)) j and (Av(n−1)) j =

n
2 ei jθ = n

2 (v
(1)) j,

so that A(v(1) ± v(n−1)) = ± n
2 (v

(1) ± v(n−1)). Thus
{v(0),v(2),v(3), . . . ,v(n−2),v(1) + v(n−1),v(1)− v(n−1)} is
a basis for Cn of eigenvectors of A with the claimed
eigenvalues.
Finally, the determinant of I +A is the product of (1+
λ ) over all eigenvalues λ of A; in this case, det(I+A) =
(1+n/2)(1−n/2) = 1−n2/4.

Second solution (by Mohamed Omar): Set x = eiθ and
write

A =
1
2

uT u+
1
2

vT v =
1
2
(
uT vT

)(u
v

)
for

u =
(
x x2 · · · xn

)
,v =

(
x−1 x−2 · · · xn

)
.

We now use the fact that for R an n×m matrix and S an
m×n matrix,

det(In +RS) = det(Im +SR).

This yields

det(IN +A)

= det
(

In +
1
2
(
uT vT

)(u
v

))
= det

(
I2 +

1
2

(
u
v

)(
uT vT

))
=

1
4

det
(

2+uuT uvT

vuT 2+ vvT

)
=

1
4

det
(

2+(x2 + · · ·+ x2n) n
n 2+(x−2 + · · ·+ x−2n)

)
=

1
4

det
(

2 n
n 2

)
= 1− n2

4
.

B–6 First solution: Choose a sequence p1, p2, . . . of primes
as follows. Let p1 be any prime dividing an element of
S. To define p j+1 given p1, . . . , p j, choose an integer
N j ∈ S relatively prime to p1 · · · p j and let p j+1 be a
prime divisor of N j, or stop if no such N j exists.

Since S is finite, the above algorithm eventually termi-
nates in a finite sequence p1, . . . , pk. Let m be the small-
est integer such that p1 · · · pm has a divisor in S. (By the
assumption on S with n = p1 · · · pk, m = k has this prop-
erty, so m is well-defined.) If m= 1, then p1 ∈ S, and we
are done, so assume m ≥ 2. Any divisor d of p1 · · · pm
in S must be a multiple of pm, or else it would also be
a divisor of p1 · · · pm−1, contradicting the choice of m.
But now gcd(d,Nm−1) = pm, as desired.

Second solution (from sci.math): Let n be the small-
est integer such that gcd(s,n) > 1 for all s in n; note
that n obviously has no repeated prime factors. By the
condition on S, there exists s ∈ S which divides n.

On the other hand, if p is a prime divisor of s, then by
the choice of n, n/p is relatively prime to some ele-
ment t of S. Since n cannot be relatively prime to t, t
is divisible by p, but not by any other prime divisor of
n (as those primes divide n/p). Thus gcd(s, t) = p, as
desired.


