The 61st William Lowell Putnam Mathematical Competition Saturday, December 2, 2000

- A-1 Let *A* be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_j^2$, given that x_0, x_1, \ldots are positive numbers for which $\sum_{j=0}^{\infty} x_j = A$?
- A-2 Prove that there exist infinitely many integers *n* such that n, n + 1, n + 2 are each the sum of the squares of two integers. [Example: $0 = 0^2 + 0^2$, $1 = 0^2 + 1^2$, $2 = 1^2 + 1^2$.]
- A–3 The octagon $P_1P_2P_3P_4P_5P_6P_7P_8$ is inscribed in a circle, with the vertices around the circumference in the given order. Given that the polygon $P_1P_3P_5P_7$ is a square of area 5, and the polygon $P_2P_4P_6P_8$ is a rectangle of area 4, find the maximum possible area of the octagon.
- A-4 Show that the improper integral

$$\lim_{B\to\infty}\int_0^B\sin(x)\sin(x^2)\,dx$$

converges.

- A–5 Three distinct points with integer coordinates lie in the plane on a circle of radius r > 0. Show that two of these points are separated by a distance of at least $r^{1/3}$.
- A-6 Let f(x) be a polynomial with integer coefficients. Define a sequence a_0, a_1, \ldots of integers such that $a_0 = 0$ and $a_{n+1} = f(a_n)$ for all $n \ge 0$. Prove that if there exists a positive integer *m* for which $a_m = 0$ then either $a_1 = 0$ or $a_2 = 0$.
- B-1 Let a_j, b_j, c_j be integers for $1 \le j \le N$. Assume for each j, at least one of a_j, b_j, c_j is odd. Show that there exist integers r, s, t such that $ra_j + sb_j + tc_j$ is odd for at least 4N/7 values of j, $1 \le j \le N$.

B-2 Prove that the expression

$$\frac{gcd(m,n)}{n} \binom{n}{m}$$

is an integer for all pairs of integers $n \ge m \ge 1$.

B-3 Let $f(t) = \sum_{j=1}^{N} a_j \sin(2\pi j t)$, where each a_j is real and a_N is not equal to 0. Let N_k denote the number of zeroes (including multiplicities) of $\frac{d^k f}{dt^k}$. Prove that

$$N_0 \leq N_1 \leq N_2 \leq \cdots$$
 and $\lim_{k \to \infty} N_k = 2N$.

[Editorial clarification: only zeroes in [0,1) should be counted.]

- B-4 Let f(x) be a continuous function such that $f(2x^2 1) = 2xf(x)$ for all x. Show that f(x) = 0 for $-1 \le x \le 1$.
- B-5 Let S_0 be a finite set of positive integers. We define finite sets $S_1, S_2, ...$ of positive integers as follows: the integer *a* is in S_{n+1} if and only if exactly one of a-1 or *a* is in S_n . Show that there exist infinitely many integers *N* for which $S_N = S_0 \cup \{N + a : a \in S_0\}$.
- B-6 Let *B* be a set of more than $2^{n+1}/n$ distinct points with coordinates of the form $(\pm 1, \pm 1, \ldots, \pm 1)$ in *n*-dimensional space with $n \ge 3$. Show that there are three distinct points in *B* which are the vertices of an equilateral triangle.