The 61st William Lowell Putnam Mathematical Competition
 Saturday, December 2, 2000

A-1 Let A be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_{j}^{2}$, given that x_{0}, x_{1}, \ldots are positive numbers for which $\sum_{j=0}^{\infty} x_{j}=A$?

A-2 Prove that there exist infinitely many integers n such that $n, n+1, n+2$ are each the sum of the squares of two integers. [Example: $0=0^{2}+0^{2}, 1=0^{2}+1^{2}, 2=$ $1^{2}+1^{2}$.]

A-3 The octagon $P_{1} P_{2} P_{3} P_{4} P_{5} P_{6} P_{7} P_{8}$ is inscribed in a circle, with the vertices around the circumference in the given order. Given that the polygon $P_{1} P_{3} P_{5} P_{7}$ is a square of area 5, and the polygon $P_{2} P_{4} P_{6} P_{8}$ is a rectangle of area 4 , find the maximum possible area of the octagon.

A-4 Show that the improper integral

$$
\lim _{B \rightarrow \infty} \int_{0}^{B} \sin (x) \sin \left(x^{2}\right) d x
$$

converges.
A-5 Three distinct points with integer coordinates lie in the plane on a circle of radius $r>0$. Show that two of these points are separated by a distance of at least $r^{1 / 3}$.

A-6 Let $f(x)$ be a polynomial with integer coefficients. Define a sequence a_{0}, a_{1}, \ldots of integers such that $a_{0}=0$ and $a_{n+1}=f\left(a_{n}\right)$ for all $n \geq 0$. Prove that if there exists a positive integer m for which $a_{m}=0$ then either $a_{1}=0$ or $a_{2}=0$.

B-1 Let a_{j}, b_{j}, c_{j} be integers for $1 \leq j \leq N$. Assume for each j, at least one of a_{j}, b_{j}, c_{j} is odd. Show that there exist integers r, s, t such that $r a_{j}+s b_{j}+t c_{j}$ is odd for at least $4 N / 7$ values of $j, 1 \leq j \leq N$.

B-2 Prove that the expression

$$
\frac{\operatorname{gcd}(m, n)}{n}\binom{n}{m}
$$

is an integer for all pairs of integers $n \geq m \geq 1$.
B-3 Let $f(t)=\sum_{j=1}^{N} a_{j} \sin (2 \pi j t)$, where each a_{j} is real and a_{N} is not equal to 0 . Let N_{k} denote the number of zeroes (including multiplicities) of $\frac{d^{k} f}{d t^{k}}$. Prove that

$$
N_{0} \leq N_{1} \leq N_{2} \leq \cdots \text { and } \lim _{k \rightarrow \infty} N_{k}=2 N
$$

[Editorial clarification: only zeroes in $[0,1)$ should be counted.]

B-4 Let $f(x)$ be a continuous function such that $f\left(2 x^{2}-\right.$ $1)=2 x f(x)$ for all x. Show that $f(x)=0$ for $-1 \leq$ $x \leq 1$.
B-5 Let S_{0} be a finite set of positive integers. We define finite sets S_{1}, S_{2}, \ldots of positive integers as follows: the integer a is in S_{n+1} if and only if exactly one of $a-1$ or a is in S_{n}. Show that there exist infinitely many integers N for which $S_{N}=S_{0} \cup\left\{N+a: a \in S_{0}\right\}$.

B-6 Let B be a set of more than $2^{n+1} / n$ distinct points with coordinates of the form $(\pm 1, \pm 1, \ldots, \pm 1)$ in n dimensional space with $n \geq 3$. Show that there are three distinct points in B which are the vertices of an equilateral triangle.

