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A–1 The possible values comprise the interval (0,A2).

To see that the values must lie in this interval, note that(
m

∑
j=0

x j

)2

=
m

∑
j=0

x2
j + ∑

0≤ j<k≤m
2x jxk,

so ∑
m
j=0 x2

j ≤ A2 − 2x0x1. Letting m → ∞, we have
∑

∞
j=0 x2

j ≤ A2−2x0x1 < A2.

To show that all values in (0,A2) can be obtained, we
use geometric progressions with x1/x0 = x2/x1 = · · ·=
d for variable d. Then ∑

∞
j=0 x j = x0/(1−d) and

∞

∑
j=0

x2
j =

x2
0

1−d2 =
1−d
1+d

(
∞

∑
j=0

x j

)2

.

As d increases from 0 to 1, (1− d)/(1+ d) decreases
from 1 to 0. Thus if we take geometric progressions
with ∑

∞
j=0 x j = A, ∑

∞
j=0 x2

j ranges from 0 to A2. Thus the
possible values are indeed those in the interval (0,A2),
as claimed.

A–2 First solution: Let a be an even integer such that a2 +1
is not prime. (For example, choose a ≡ 2 (mod 5), so
that a2+1 is divisible by 5.) Then we can write a2+1 as
a difference of squares x2−b2, by factoring a2+1 as rs
with r ≥ s > 1, and setting x = (r+ s)/2, b = (r− s)/2.
Finally, put n = x2−1, so that n = a2 +b2, n+1 = x2,
n+2 = x2 +1.

Second solution: It is well-known that the equation
x2 − 2y2 = 1 has infinitely many solutions (the so-
called “Pell” equation). Thus setting n = 2y2 (so that
n = y2 + y2, n + 1 = x2 + 02, n + 2 = x2 + 12) yields
infinitely many n with the desired property.

Third solution: As in the first solution, it suffices to ex-
hibit x such that x2− 1 is the sum of two squares. We
will take x = 32n

, and show that x2−1 is the sum of two
squares by induction on n: if 32n −1 = a2 +b2, then

(32n+1 −1) = (32n −1)(32n
+1)

= (32n−1
a+b)2 +(a−32n−1

b)2.

Fourth solution (by Jonathan Weinstein): Let n = 4k4+
4k2 = (2k2)2 +(2k)2 for any integer k. Then n+ 1 =
(2k2 +1)2 +02 and n+2 = (2k2 +1)2 +12.

A–3 The maximum area is 3
√

5.

We deduce from the area of P1P3P5P7 that the radius
of the circle is

√
5/2. An easy calculation using the

Pythagorean Theorem then shows that the rectangle
P2P4P6P8 has sides

√
2 and 2

√
2. For notational ease,

denote the area of a polygon by putting brackets around
the name of the polygon.

By symmetry, the area of the octagon can be expressed
as

[P2P4P6P8]+2[P2P3P4]+2[P4P5P6].

Note that [P2P3P4] is
√

2 times the distance from P3 to
P2P4, which is maximized when P3 lies on the midpoint
of arc P2P4; similarly, [P4P5P6] is

√
2/2 times the dis-

tance from P5 to P4P6, which is maximized when P5
lies on the midpoint of arc P4P6. Thus the area of
the octagon is maximized when P3 is the midpoint of
arc P2P4 and P5 is the midpoint of arc P4P6. In this
case, it is easy to calculate that [P2P3P4] =

√
5− 1 and

[P4P5P6] =
√

5/2− 1, and so the area of the octagon is
3
√

5.

A–4 To avoid some improper integrals at 0, we may as well
replace the left endpoint of integration by some ε > 0.
We now use integration by parts:∫ B

ε

sinxsinx2 dx =
∫ B

ε

sinx
2x

sinx2(2xdx)

= − sinx
2x

cosx2
∣∣∣∣B
ε

+
∫ B

ε

(
cosx
2x
− sinx

2x2

)
cosx2 dx.

Now sinx
2x cosx2 tends to 0 as B→ ∞, and the integral

of sinx
2x2 cosx2 converges absolutely by comparison with

1/x2. Thus it suffices to note that∫ B

ε

cosx
2x

cosx2 dx =
∫ B

ε

cosx
4x2 cosx2(2xdx)

=
cosx
4x2 sinx2

∣∣∣B
ε

−
∫ B

ε

2xcosx− sinx
4x3 sinx2 dx,

and that the final integral converges absolutely by com-
parison to 1/x3.

An alternate approach is to first rewrite sinxsinx2 as
1
2 (cos(x2− x)− cos(x2 + x)). Then

∫ B

ε

cos(x2 + x)dx =− sin(x2 + x)
2x+1

∣∣∣∣B
ε

−
∫ B

ε

2sin(x2 + x)
(2x+1)2 dx
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converges absolutely, and
∫ B

0 cos(x2− x) can be treated
similarly.

A–5 Let a,b,c be the distances between the points. Then the
area of the triangle with the three points as vertices is
abc/4r. On the other hand, the area of a triangle whose
vertices have integer coordinates is at least 1/2 (for ex-
ample, by Pick’s Theorem). Thus abc/4r ≥ 1/2, and
so

max{a,b,c} ≥ (abc)1/3 ≥ (2r)1/3 > r1/3.

A–6 Recall that if f (x) is a polynomial with integer coeffi-
cients, then m−n divides f (m)− f (n) for any integers
m and n. In particular, if we put bn = an+1−an, then bn
divides bn+1 for all n. On the other hand, we are given
that a0 = am = 0, which implies that a1 = am+1 and so
b0 = bm. If b0 = 0, then a0 = a1 = · · ·= am and we are
done. Otherwise, |b0| = |b1| = |b2| = · · · , so bn = ±b0
for all n.

Now b0 + · · ·+bm−1 = am−a0 = 0, so half of the inte-
gers b0, . . . ,bm−1 are positive and half are negative. In
particular, there exists an integer 0 < k < m such that
bk−1 = −bk, which is to say, ak−1 = ak+1. From this it
follows that an = an+2 for all n ≥ k− 1; in particular,
for m = n, we have

a0 = am = am+2 = f ( f (a0)) = a2.

B–1 Consider the seven triples (a,b,c) with a,b,c ∈ {0,1}
not all zero. Notice that if r j,s j, t j are not all even, then
four of the sums ar j +bs j + ct j with a,b,c ∈ {0,1} are
even and four are odd. Of course the sum with a = b =
c = 0 is even, so at least four of the seven triples with
a,b,c not all zero yield an odd sum. In other words, at
least 4N of the tuples (a,b,c, j) yield odd sums. By the
pigeonhole principle, there is a triple (a,b,c) for which
at least 4N/7 of the sums are odd.

B–2 Since gcd(m,n) is an integer linear combination of m
and n, it follows that

gcd(m,n)
n

(
n
m

)
is an integer linear combination of the integers

m
n

(
n
m

)
=

(
n−1
m−1

)
and

n
n

(
n
m

)
=

(
n
m

)
and hence is itself an integer.

B–3 Put fk(t) =
d f k

dtk . Recall Rolle’s theorem: if f (t) is dif-
ferentiable, then between any two zeroes of f (t) there
exists a zero of f ′(t). This also applies when the zeroes
are not all distinct: if f has a zero of multiplicity m at
t = x, then f ′ has a zero of multiplicity at least m− 1
there.

Therefore, if 0 ≤ a0 ≤ a1 ≤ ·· · ≤ ar < 1 are the roots
of fk in [0,1), then fk+1 has a root in each of the in-
tervals (a0,a1),(a1,a2), . . . ,(ar−1,ar), so long as we
adopt the convention that the empty interval (t, t) ac-
tually contains the point t itself. There is also a root in
the “wraparound” interval (ar,a0). Thus Nk+1 ≥ Nk.

Next, note that if we set z = e2πit ; then

f4k(t) =
1
2i

N

∑
j=1

j4ka j(z j− z− j)

is equal to z−N times a polynomial of degree 2N. Hence
as a function of z, it has at most 2N roots; therefore fk(t)
has at most 2N roots in [0,1]. That is, Nk ≤ 2N for all
N.

To establish that Nk → 2N, we make precise the obser-
vation that

fk(t) =
N

∑
j=1

j4ka j sin(2π jt)

is dominated by the term with j = N. At the points
t = (2i + 1)/(2N) for i = 0,1, . . . ,N − 1, we have
N4kaN sin(2πNt) = ±N4kaN . If k is chosen large
enough so that

|aN |N4k > |a1|14k + · · ·+ |aN−1|(N−1)4k,

then fk((2i + 1)/2N) has the same sign as
aN sin(2πNat), which is to say, the sequence
fk(1/2N), fk(3/2N), . . . alternates in sign. Thus be-
tween these points (again including the “wraparound”
interval) we find 2N sign changes of fk. Therefore
limk→∞ Nk = 2N.

B–4 For t real and not a multiple of π , write g(t) = f (cos t)
sin t .

Then g(t +π) = g(t); furthermore, the given equation
implies that

g(2t) =
f (2cos2 t−1)

sin(2t)
=

2(cos t) f (cos t)
sin(2t)

= g(t).

In particular, for any integer n and k, we have

g(1+nπ/2k) = g(2k +nπ) = g(2k) = g(1).

Since f is continuous, g is continuous where it is de-
fined; but the set {1+ nπ/2k|n,k ∈ Z} is dense in the
reals, and so g must be constant on its domain. Since
g(−t) = −g(t) for all t, we must have g(t) = 0 when t
is not a multiple of π . Hence f (x) = 0 for x ∈ (−1,1).
Finally, setting x = 0 and x = 1 in the given equation
yields f (−1) = f (1) = 0.

B–5 We claim that all integers N of the form 2k, with k a
positive integer and N > max{S0}, satisfy the desired
conditions.
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It follows from the definition of Sn, and induction on n,
that

∑
j∈Sn

x j ≡ (1+ x) ∑
j∈Sn−1

x j

≡ (1+ x)n
∑
j∈S0

x j (mod 2).

From the identity (x+ y)2 ≡ x2 + y2 (mod 2) and in-
duction on n, we have (x+ y)2n ≡ x2n

+ y2n
(mod 2).

Hence if we choose N to be a power of 2 greater than
max{S0}, then

∑
j∈Sn

≡ (1+ xN) ∑
j∈S0

x j

and SN = S0∪{N +a : a ∈ S0}, as desired.

B–6 For each point P in B, let SP be the set of points with
all coordinates equal to ±1 which differ from P in ex-
actly one coordinate. Since there are more than 2n+1/n
points in B, and each SP has n elements, the cardinali-
ties of the sets SP add up to more than 2n+1, which is to
say, more than twice the total number of points. By the
pigeonhole principle, there must be a point in three of
the sets, say SP,SQ,SR. But then any two of P,Q,R dif-
fer in exactly two coordinates, so PQR is an equilateral
triangle, as desired.


