Solutions to the 61st William Lowell Putnam Mathematical Competition Saturday, December 2, 2000

Manjul Bhargava, Kiran Kedlaya, and Lenny Ng

A–1 The possible values comprise the interval $(0, A^2)$.

To see that the values must lie in this interval, note that

$$\left(\sum_{j=0}^m x_j\right)^2 = \sum_{j=0}^m x_j^2 + \sum_{0 \le j < k \le m} 2x_j x_k,$$

so $\sum_{j=0}^{m} x_j^2 \leq A^2 - 2x_0x_1$. Letting $m \to \infty$, we have $\sum_{j=0}^{\infty} x_j^2 \leq A^2 - 2x_0x_1 < A^2$.

To show that all values in $(0, A^2)$ can be obtained, we use geometric progressions with $x_1/x_0 = x_2/x_1 = \cdots = d$ for variable *d*. Then $\sum_{j=0}^{\infty} x_j = x_0/(1-d)$ and

$$\sum_{j=0}^{\infty} x_j^2 = \frac{x_0^2}{1-d^2} = \frac{1-d}{1+d} \left(\sum_{j=0}^{\infty} x_j\right)^2$$

As *d* increases from 0 to 1, (1-d)/(1+d) decreases from 1 to 0. Thus if we take geometric progressions with $\sum_{j=0}^{\infty} x_j = A$, $\sum_{j=0}^{\infty} x_j^2$ ranges from 0 to A^2 . Thus the possible values are indeed those in the interval $(0, A^2)$, as claimed.

A-2 First solution: Let *a* be an even integer such that $a^2 + 1$ is not prime. (For example, choose $a \equiv 2 \pmod{5}$, so that $a^2 + 1$ is divisible by 5.) Then we can write $a^2 + 1$ as a difference of squares $x^2 - b^2$, by factoring $a^2 + 1$ as *rs* with $r \ge s > 1$, and setting x = (r+s)/2, b = (r-s)/2. Finally, put $n = x^2 - 1$, so that $n = a^2 + b^2$, $n + 1 = x^2$, $n+2 = x^2 + 1$.

Second solution: It is well-known that the equation $x^2 - 2y^2 = 1$ has infinitely many solutions (the socalled "Pell" equation). Thus setting $n = 2y^2$ (so that $n = y^2 + y^2$, $n + 1 = x^2 + 0^2$, $n + 2 = x^2 + 1^2$) yields infinitely many *n* with the desired property.

Third solution: As in the first solution, it suffices to exhibit x such that $x^2 - 1$ is the sum of two squares. We will take $x = 3^{2^n}$, and show that $x^2 - 1$ is the sum of two squares by induction on *n*: if $3^{2^n} - 1 = a^2 + b^2$, then

$$(3^{2^{n+1}} - 1) = (3^{2^n} - 1)(3^{2^n} + 1)$$
$$= (3^{2^{n-1}}a + b)^2 + (a - 3^{2^{n-1}}b)^2.$$

Fourth solution (by Jonathan Weinstein): Let $n = 4k^4 + 4k^2 = (2k^2)^2 + (2k)^2$ for any integer *k*. Then $n + 1 = (2k^2 + 1)^2 + 0^2$ and $n + 2 = (2k^2 + 1)^2 + 1^2$.

A–3 The maximum area is $3\sqrt{5}$.

We deduce from the area of $P_1P_3P_5P_7$ that the radius of the circle is $\sqrt{5/2}$. An easy calculation using the

Pythagorean Theorem then shows that the rectangle $P_2P_4P_6P_8$ has sides $\sqrt{2}$ and $2\sqrt{2}$. For notational ease, denote the area of a polygon by putting brackets around the name of the polygon.

By symmetry, the area of the octagon can be expressed as

$$[P_2P_4P_6P_8] + 2[P_2P_3P_4] + 2[P_4P_5P_6]$$

Note that $[P_2P_3P_4]$ is $\sqrt{2}$ times the distance from P_3 to P_2P_4 , which is maximized when P_3 lies on the midpoint of arc P_2P_4 ; similarly, $[P_4P_5P_6]$ is $\sqrt{2}/2$ times the distance from P_5 to P_4P_6 , which is maximized when P_5 lies on the midpoint of arc P_4P_6 . Thus the area of the octagon is maximized when P_3 is the midpoint of arc P_2P_4 and P_5 is the midpoint of arc P_4P_6 . In this case, it is easy to calculate that $[P_2P_3P_4] = \sqrt{5} - 1$ and $[P_4P_5P_6] = \sqrt{5}/2 - 1$, and so the area of the octagon is $3\sqrt{5}$.

A–4 To avoid some improper integrals at 0, we may as well replace the left endpoint of integration by some $\varepsilon > 0$. We now use integration by parts:

$$\int_{\varepsilon}^{B} \sin x \sin x^{2} dx = \int_{\varepsilon}^{B} \frac{\sin x}{2x} \sin x^{2} (2x dx)$$
$$= -\frac{\sin x}{2x} \cos x^{2} \Big|_{\varepsilon}^{B}$$
$$+ \int_{\varepsilon}^{B} \left(\frac{\cos x}{2x} - \frac{\sin x}{2x^{2}}\right) \cos x^{2} dx.$$

Now $\frac{\sin x}{2x} \cos x^2$ tends to 0 as $B \to \infty$, and the integral of $\frac{\sin x}{2x^2} \cos x^2$ converges absolutely by comparison with $1/x^2$. Thus it suffices to note that

$$\int_{\varepsilon}^{B} \frac{\cos x}{2x} \cos x^{2} dx = \int_{\varepsilon}^{B} \frac{\cos x}{4x^{2}} \cos x^{2} (2x dx)$$
$$= \frac{\cos x}{4x^{2}} \sin x^{2} \Big|_{\varepsilon}^{B}$$
$$- \int_{\varepsilon}^{B} \frac{2x \cos x - \sin x}{4x^{3}} \sin x^{2} dx,$$

and that the final integral converges absolutely by comparison to $1/x^3$.

An alternate approach is to first rewrite $\sin x \sin x^2$ as $\frac{1}{2}(\cos(x^2-x)-\cos(x^2+x))$. Then

$$\int_{\varepsilon}^{B} \cos(x^{2} + x) dx = -\frac{\sin(x^{2} + x)}{2x + 1} \Big|_{\varepsilon}^{B}$$
$$-\int_{\varepsilon}^{B} \frac{2\sin(x^{2} + x)}{(2x + 1)^{2}} dx$$

converges absolutely, and $\int_0^B \cos(x^2 - x)$ can be treated similarly.

A-5 Let a, b, c be the distances between the points. Then the area of the triangle with the three points as vertices is abc/4r. On the other hand, the area of a triangle whose vertices have integer coordinates is at least 1/2 (for example, by Pick's Theorem). Thus $abc/4r \ge 1/2$, and so

$$\max\{a,b,c\} \ge (abc)^{1/3} \ge (2r)^{1/3} > r^{1/3}.$$

A-6 Recall that if f(x) is a polynomial with integer coefficients, then m-n divides f(m) - f(n) for any integers m and n. In particular, if we put $b_n = a_{n+1} - a_n$, then b_n divides b_{n+1} for all n. On the other hand, we are given that $a_0 = a_m = 0$, which implies that $a_1 = a_{m+1}$ and so $b_0 = b_m$. If $b_0 = 0$, then $a_0 = a_1 = \cdots = a_m$ and we are done. Otherwise, $|b_0| = |b_1| = |b_2| = \cdots$, so $b_n = \pm b_0$ for all n.

Now $b_0 + \cdots + b_{m-1} = a_m - a_0 = 0$, so half of the integers b_0, \ldots, b_{m-1} are positive and half are negative. In particular, there exists an integer 0 < k < m such that $b_{k-1} = -b_k$, which is to say, $a_{k-1} = a_{k+1}$. From this it follows that $a_n = a_{n+2}$ for all $n \ge k - 1$; in particular, for m = n, we have

$$a_0 = a_m = a_{m+2} = f(f(a_0)) = a_2.$$

- B–1 Consider the seven triples (a, b, c) with $a, b, c \in \{0, 1\}$ not all zero. Notice that if r_j, s_j, t_j are not all even, then four of the sums $ar_j + bs_j + ct_j$ with $a, b, c \in \{0, 1\}$ are even and four are odd. Of course the sum with a = b =c = 0 is even, so at least four of the seven triples with a, b, c not all zero yield an odd sum. In other words, at least 4N of the tuples (a, b, c, j) yield odd sums. By the pigeonhole principle, there is a triple (a, b, c) for which at least 4N/7 of the sums are odd.
- B-2 Since gcd(m,n) is an integer linear combination of *m* and *n*, it follows that

$$\frac{gcd(m,n)}{n} \binom{n}{m}$$

is an integer linear combination of the integers

$$\frac{m}{n}\binom{n}{m} = \binom{n-1}{m-1} \text{ and } \frac{n}{n}\binom{n}{m} = \binom{n}{m}$$

and hence is itself an integer.

B-3 Put $f_k(t) = \frac{df^k}{dt^k}$. Recall Rolle's theorem: if f(t) is differentiable, then between any two zeroes of f(t) there exists a zero of f'(t). This also applies when the zeroes are not all distinct: if f has a zero of multiplicity m at t = x, then f' has a zero of multiplicity at least m - 1 there.

Therefore, if $0 \le a_0 \le a_1 \le \cdots \le a_r < 1$ are the roots of f_k in [0,1), then f_{k+1} has a root in each of the intervals $(a_0,a_1), (a_1,a_2), \ldots, (a_{r-1},a_r)$, so long as we adopt the convention that the empty interval (t,t) actually contains the point *t* itself. There is also a root in the "wraparound" interval (a_r,a_0) . Thus $N_{k+1} \ge N_k$.

Next, note that if we set $z = e^{2\pi i t}$; then

$$f_{4k}(t) = \frac{1}{2i} \sum_{j=1}^{N} j^{4k} a_j (z^j - z^{-j})$$

is equal to z^{-N} times a polynomial of degree 2*N*. Hence as a function of *z*, it has at most 2*N* roots; therefore $f_k(t)$ has at most 2*N* roots in [0,1]. That is, $N_k \leq 2N$ for all *N*.

To establish that $N_k \rightarrow 2N$, we make precise the observation that

$$f_k(t) = \sum_{j=1}^N j^{4k} a_j \sin(2\pi j t)$$

is dominated by the term with j = N. At the points t = (2i+1)/(2N) for i = 0, 1, ..., N-1, we have $N^{4k}a_N \sin(2\pi Nt) = \pm N^{4k}a_N$. If k is chosen large enough so that

$$|a_N|N^{4k} > |a_1|1^{4k} + \dots + |a_{N-1}|(N-1)^{4k},$$

then $f_k((2i + 1)/2N)$ has the same sign as $a_N \sin(2\pi Nat)$, which is to say, the sequence $f_k(1/2N), f_k(3/2N), \ldots$ alternates in sign. Thus between these points (again including the "wraparound" interval) we find 2N sign changes of f_k . Therefore $\lim_{k\to\infty} N_k = 2N$.

B-4 For *t* real and not a multiple of π , write $g(t) = \frac{f(\cos t)}{\sin t}$. Then $g(t + \pi) = g(t)$; furthermore, the given equation implies that

$$g(2t) = \frac{f(2\cos^2 t - 1)}{\sin(2t)} = \frac{2(\cos t)f(\cos t)}{\sin(2t)} = g(t).$$

In particular, for any integer *n* and *k*, we have

$$g(1+n\pi/2^k) = g(2^k+n\pi) = g(2^k) = g(1).$$

Since *f* is continuous, *g* is continuous where it is defined; but the set $\{1 + n\pi/2^k | n, k \in \mathbb{Z}\}$ is dense in the reals, and so *g* must be constant on its domain. Since g(-t) = -g(t) for all *t*, we must have g(t) = 0 when *t* is not a multiple of π . Hence f(x) = 0 for $x \in (-1, 1)$. Finally, setting x = 0 and x = 1 in the given equation yields f(-1) = f(1) = 0.

B-5 We claim that all integers N of the form 2^k , with k a positive integer and $N > \max{S_0}$, satisfy the desired conditions.

It follows from the definition of S_n , and induction on n, that

$$\sum_{j \in S_n} x^j \equiv (1+x) \sum_{j \in S_{n-1}} x^j$$
$$\equiv (1+x)^n \sum_{j \in S_0} x^j \pmod{2}.$$

From the identity $(x + y)^2 \equiv x^2 + y^2 \pmod{2}$ and induction on *n*, we have $(x + y)^{2^n} \equiv x^{2^n} + y^{2^n} \pmod{2}$. Hence if we choose *N* to be a power of 2 greater than $\max\{S_0\}$, then

$$\sum_{j\in S_n} \equiv (1+x^N) \sum_{j\in S_0} x^j$$

and $S_N = S_0 \cup \{N + a : a \in S_0\}$, as desired.

B–6 For each point *P* in *B*, let S_P be the set of points with all coordinates equal to ± 1 which differ from *P* in exactly one coordinate. Since there are more than $2^{n+1}/n$ points in *B*, and each S_P has *n* elements, the cardinalities of the sets S_P add up to more than 2^{n+1} , which is to say, more than twice the total number of points. By the pigeonhole principle, there must be a point in three of the sets, say S_P, S_Q, S_R . But then any two of *P*, *Q*, *R* differ in exactly two coordinates, so *PQR* is an equilateral triangle, as desired.