Solutions to the 61st William Lowell Putnam Mathematical Competition Saturday, December 2, 2000

Manjul Bhargava, Kiran Kedlaya, and Lenny Ng

A-1 The possible values comprise the interval $\left(0, A^{2}\right)$.
To see that the values must lie in this interval, note that

$$
\left(\sum_{j=0}^{m} x_{j}\right)^{2}=\sum_{j=0}^{m} x_{j}^{2}+\sum_{0 \leq j<k \leq m} 2 x_{j} x_{k},
$$

so $\sum_{j=0}^{m} x_{j}^{2} \leq A^{2}-2 x_{0} x_{1}$. Letting $m \rightarrow \infty$, we have $\sum_{j=0}^{\infty} x_{j}^{2} \leq A^{2}-2 x_{0} x_{1}<A^{2}$.
To show that all values in $\left(0, A^{2}\right)$ can be obtained, we use geometric progressions with $x_{1} / x_{0}=x_{2} / x_{1}=\cdots=$ d for variable d. Then $\sum_{j=0}^{\infty} x_{j}=x_{0} /(1-d)$ and

$$
\sum_{j=0}^{\infty} x_{j}^{2}=\frac{x_{0}^{2}}{1-d^{2}}=\frac{1-d}{1+d}\left(\sum_{j=0}^{\infty} x_{j}\right)^{2}
$$

As d increases from 0 to $1,(1-d) /(1+d)$ decreases from 1 to 0 . Thus if we take geometric progressions with $\sum_{j=0}^{\infty} x_{j}=A, \sum_{j=0}^{\infty} x_{j}^{2}$ ranges from 0 to A^{2}. Thus the possible values are indeed those in the interval $\left(0, A^{2}\right)$, as claimed.

A-2 First solution: Let a be an even integer such that $a^{2}+1$ is not prime. (For example, choose $a \equiv 2(\bmod 5)$, so that $a^{2}+1$ is divisible by 5 .) Then we can write $a^{2}+1$ as a difference of squares $x^{2}-b^{2}$, by factoring $a^{2}+1$ as $r s$ with $r \geq s>1$, and setting $x=(r+s) / 2, b=(r-s) / 2$. Finally, put $n=x^{2}-1$, so that $n=a^{2}+b^{2}, n+1=x^{2}$, $n+2=x^{2}+1$.
Second solution: It is well-known that the equation $x^{2}-2 y^{2}=1$ has infinitely many solutions (the socalled "Pell" equation). Thus setting $n=2 y^{2}$ (so that $n=y^{2}+y^{2}, n+1=x^{2}+0^{2}, n+2=x^{2}+1^{2}$) yields infinitely many n with the desired property.
Third solution: As in the first solution, it suffices to exhibit x such that $x^{2}-1$ is the sum of two squares. We will take $x=3^{2^{n}}$, and show that $x^{2}-1$ is the sum of two squares by induction on n : if $3^{2^{n}}-1=a^{2}+b^{2}$, then

$$
\begin{aligned}
\left(3^{2^{n+1}}-1\right) & =\left(3^{2^{n}}-1\right)\left(3^{2^{n}}+1\right) \\
& =\left(3^{2^{n-1}} a+b\right)^{2}+\left(a-3^{2^{n-1}} b\right)^{2}
\end{aligned}
$$

Fourth solution (by Jonathan Weinstein): Let $n=4 k^{4}+$ $4 k^{2}=\left(2 k^{2}\right)^{2}+(2 k)^{2}$ for any integer k. Then $n+1=$ $\left(2 k^{2}+1\right)^{2}+0^{2}$ and $n+2=\left(2 k^{2}+1\right)^{2}+1^{2}$.

A-3 The maximum area is $3 \sqrt{5}$.
We deduce from the area of $P_{1} P_{3} P_{5} P_{7}$ that the radius of the circle is $\sqrt{5 / 2}$. An easy calculation using the

Pythagorean Theorem then shows that the rectangle $P_{2} P_{4} P_{6} P_{8}$ has sides $\sqrt{2}$ and $2 \sqrt{2}$. For notational ease, denote the area of a polygon by putting brackets around the name of the polygon.
By symmetry, the area of the octagon can be expressed as

$$
\left[P_{2} P_{4} P_{6} P_{8}\right]+2\left[P_{2} P_{3} P_{4}\right]+2\left[P_{4} P_{5} P_{6}\right]
$$

Note that $\left[P_{2} P_{3} P_{4}\right]$ is $\sqrt{2}$ times the distance from P_{3} to $P_{2} P_{4}$, which is maximized when P_{3} lies on the midpoint of $\operatorname{arc} P_{2} P_{4}$; similarly, $\left[P_{4} P_{5} P_{6}\right]$ is $\sqrt{2} / 2$ times the distance from P_{5} to $P_{4} P_{6}$, which is maximized when P_{5} lies on the midpoint of arc $P_{4} P_{6}$. Thus the area of the octagon is maximized when P_{3} is the midpoint of $\operatorname{arc} P_{2} P_{4}$ and P_{5} is the midpoint of arc $P_{4} P_{6}$. In this case, it is easy to calculate that $\left[P_{2} P_{3} P_{4}\right]=\sqrt{5}-1$ and $\left[P_{4} P_{5} P_{6}\right]=\sqrt{5} / 2-1$, and so the area of the octagon is $3 \sqrt{5}$.

A-4 To avoid some improper integrals at 0 , we may as well replace the left endpoint of integration by some $\varepsilon>0$. We now use integration by parts:

$$
\begin{aligned}
\int_{\varepsilon}^{B} \sin x \sin x^{2} d x & =\int_{\varepsilon}^{B} \frac{\sin x}{2 x} \sin x^{2}(2 x d x) \\
& =-\left.\frac{\sin x}{2 x} \cos x^{2}\right|_{\varepsilon} ^{B} \\
& +\int_{\varepsilon}^{B}\left(\frac{\cos x}{2 x}-\frac{\sin x}{2 x^{2}}\right) \cos x^{2} d x
\end{aligned}
$$

Now $\frac{\sin x}{2 x} \cos x^{2}$ tends to 0 as $B \rightarrow \infty$, and the integral of $\frac{\sin x}{2 x^{2}} \cos x^{2}$ converges absolutely by comparison with $1 / x^{2}$. Thus it suffices to note that

$$
\begin{aligned}
\int_{\varepsilon}^{B} \frac{\cos x}{2 x} \cos x^{2} d x & =\int_{\varepsilon}^{B} \frac{\cos x}{4 x^{2}} \cos x^{2}(2 x d x) \\
& =\left.\frac{\cos x}{4 x^{2}} \sin x^{2}\right|_{\varepsilon} ^{B} \\
& -\int_{\varepsilon}^{B} \frac{2 x \cos x-\sin x}{4 x^{3}} \sin x^{2} d x
\end{aligned}
$$

and that the final integral converges absolutely by comparison to $1 / x^{3}$.
An alternate approach is to first rewrite $\sin x \sin x^{2}$ as $\frac{1}{2}\left(\cos \left(x^{2}-x\right)-\cos \left(x^{2}+x\right)\right)$. Then

$$
\begin{aligned}
\int_{\varepsilon}^{B} \cos \left(x^{2}+x\right) d x & =-\left.\frac{\sin \left(x^{2}+x\right)}{2 x+1}\right|_{\varepsilon} ^{B} \\
& -\int_{\varepsilon}^{B} \frac{2 \sin \left(x^{2}+x\right)}{(2 x+1)^{2}} d x
\end{aligned}
$$

converges absolutely, and $\int_{0}^{B} \cos \left(x^{2}-x\right)$ can be treated similarly.

A-5 Let a, b, c be the distances between the points. Then the area of the triangle with the three points as vertices is $a b c / 4 r$. On the other hand, the area of a triangle whose vertices have integer coordinates is at least $1 / 2$ (for example, by Pick's Theorem). Thus $a b c / 4 r \geq 1 / 2$, and so

$$
\max \{a, b, c\} \geq(a b c)^{1 / 3} \geq(2 r)^{1 / 3}>r^{1 / 3}
$$

A-6 Recall that if $f(x)$ is a polynomial with integer coefficients, then $m-n$ divides $f(m)-f(n)$ for any integers m and n. In particular, if we put $b_{n}=a_{n+1}-a_{n}$, then b_{n} divides b_{n+1} for all n. On the other hand, we are given that $a_{0}=a_{m}=0$, which implies that $a_{1}=a_{m+1}$ and so $b_{0}=b_{m}$. If $b_{0}=0$, then $a_{0}=a_{1}=\cdots=a_{m}$ and we are done. Otherwise, $\left|b_{0}\right|=\left|b_{1}\right|=\left|b_{2}\right|=\cdots$, so $b_{n}= \pm b_{0}$ for all n.
Now $b_{0}+\cdots+b_{m-1}=a_{m}-a_{0}=0$, so half of the integers b_{0}, \ldots, b_{m-1} are positive and half are negative. In particular, there exists an integer $0<k<m$ such that $b_{k-1}=-b_{k}$, which is to say, $a_{k-1}=a_{k+1}$. From this it follows that $a_{n}=a_{n+2}$ for all $n \geq k-1$; in particular, for $m=n$, we have

$$
a_{0}=a_{m}=a_{m+2}=f\left(f\left(a_{0}\right)\right)=a_{2}
$$

B-1 Consider the seven triples (a, b, c) with $a, b, c \in\{0,1\}$ not all zero. Notice that if r_{j}, s_{j}, t_{j} are not all even, then four of the sums $a r_{j}+b s_{j}+c t_{j}$ with $a, b, c \in\{0,1\}$ are even and four are odd. Of course the sum with $a=b=$ $c=0$ is even, so at least four of the seven triples with a, b, c not all zero yield an odd sum. In other words, at least $4 N$ of the tuples (a, b, c, j) yield odd sums. By the pigeonhole principle, there is a triple (a, b, c) for which at least $4 N / 7$ of the sums are odd.

B-2 Since $\operatorname{gcd}(m, n)$ is an integer linear combination of m and n, it follows that

$$
\frac{\operatorname{gcd}(m, n)}{n}\binom{n}{m}
$$

is an integer linear combination of the integers

$$
\frac{m}{n}\binom{n}{m}=\binom{n-1}{m-1} \text { and } \frac{n}{n}\binom{n}{m}=\binom{n}{m}
$$

and hence is itself an integer.
B-3 Put $f_{k}(t)=\frac{d f^{k}}{d t^{k}}$. Recall Rolle's theorem: if $f(t)$ is differentiable, then between any two zeroes of $f(t)$ there exists a zero of $f^{\prime}(t)$. This also applies when the zeroes are not all distinct: if f has a zero of multiplicity m at $t=x$, then f^{\prime} has a zero of multiplicity at least $m-1$ there.

Therefore, if $0 \leq a_{0} \leq a_{1} \leq \cdots \leq a_{r}<1$ are the roots of f_{k} in $[0,1)$, then f_{k+1} has a root in each of the intervals $\left(a_{0}, a_{1}\right),\left(a_{1}, a_{2}\right), \ldots,\left(a_{r-1}, a_{r}\right)$, so long as we adopt the convention that the empty interval (t, t) actually contains the point t itself. There is also a root in the "wraparound" interval $\left(a_{r}, a_{0}\right)$. Thus $N_{k+1} \geq N_{k}$.
Next, note that if we set $z=e^{2 \pi i t}$; then

$$
f_{4 k}(t)=\frac{1}{2 i} \sum_{j=1}^{N} j^{4 k} a_{j}\left(z^{j}-z^{-j}\right)
$$

is equal to z^{-N} times a polynomial of degree $2 N$. Hence as a function of z, it has at most $2 N$ roots; therefore $f_{k}(t)$ has at most $2 N$ roots in $[0,1]$. That is, $N_{k} \leq 2 N$ for all N.
To establish that $N_{k} \rightarrow 2 N$, we make precise the observation that

$$
f_{k}(t)=\sum_{j=1}^{N} j^{4 k} a_{j} \sin (2 \pi j t)
$$

is dominated by the term with $j=N$. At the points $t=(2 i+1) /(2 N)$ for $i=0,1, \ldots, N-1$, we have $N^{4 k} a_{N} \sin (2 \pi N t)= \pm N^{4 k} a_{N}$. If k is chosen large enough so that

$$
\left|a_{N}\right| N^{4 k}>\left|a_{1}\right| 1^{4 k}+\cdots+\left|a_{N-1}\right|(N-1)^{4 k}
$$

then $f_{k}((2 i+1) / 2 N)$ has the same sign as $a_{N} \sin (2 \pi N a t)$, which is to say, the sequence $f_{k}(1 / 2 N), f_{k}(3 / 2 N), \ldots$ alternates in sign. Thus between these points (again including the "wraparound" interval) we find $2 N$ sign changes of f_{k}. Therefore $\lim _{k \rightarrow \infty} N_{k}=2 N$.

B-4 For t real and not a multiple of π, write $g(t)=\frac{f(\cos t)}{\sin t}$. Then $g(t+\pi)=g(t)$; furthermore, the given equation implies that
$g(2 t)=\frac{f\left(2 \cos ^{2} t-1\right)}{\sin (2 t)}=\frac{2(\cos t) f(\cos t)}{\sin (2 t)}=g(t)$.
In particular, for any integer n and k, we have

$$
g\left(1+n \pi / 2^{k}\right)=g\left(2^{k}+n \pi\right)=g\left(2^{k}\right)=g(1) .
$$

Since f is continuous, g is continuous where it is defined; but the set $\left\{1+n \pi / 2^{k} \mid n, k \in \mathbb{Z}\right\}$ is dense in the reals, and so g must be constant on its domain. Since $g(-t)=-g(t)$ for all t, we must have $g(t)=0$ when t is not a multiple of π. Hence $f(x)=0$ for $x \in(-1,1)$. Finally, setting $x=0$ and $x=1$ in the given equation yields $f(-1)=f(1)=0$.

B-5 We claim that all integers N of the form 2^{k}, with k a positive integer and $N>\max \left\{S_{0}\right\}$, satisfy the desired conditions.

It follows from the definition of S_{n}, and induction on n, that

$$
\begin{aligned}
\sum_{j \in S_{n}} x^{j} & \equiv(1+x) \sum_{j \in S_{n-1}} x^{j} \\
& \equiv(1+x)^{n} \sum_{j \in S_{0}} x^{j} \quad(\bmod 2)
\end{aligned}
$$

From the identity $(x+y)^{2} \equiv x^{2}+y^{2}(\bmod 2)$ and induction on n, we have $(x+y)^{2^{n}} \equiv x^{2^{n}}+y^{2^{n}}(\bmod 2)$. Hence if we choose N to be a power of 2 greater than $\max \left\{S_{0}\right\}$, then

$$
\sum_{j \in S_{n}} \equiv\left(1+x^{N}\right) \sum_{j \in S_{0}} x^{j}
$$

and $S_{N}=S_{0} \cup\left\{N+a: a \in S_{0}\right\}$, as desired.
B-6 For each point P in B, let S_{P} be the set of points with all coordinates equal to ± 1 which differ from P in exactly one coordinate. Since there are more than $2^{n+1} / n$ points in B, and each S_{P} has n elements, the cardinalities of the sets S_{P} add up to more than 2^{n+1}, which is to say, more than twice the total number of points. By the pigeonhole principle, there must be a point in three of the sets, say S_{P}, S_{Q}, S_{R}. But then any two of P, Q, R differ in exactly two coordinates, so $P Q R$ is an equilateral triangle, as desired.

