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A–1 The hypothesis implies ((b∗a)∗b)∗ (b∗a) = b for all
a,b∈ S (by replacing a by b∗a), and hence a∗(b∗a) =
b for all a,b ∈ S (using (b∗a)∗b = a).

A–2 Let Pn denote the desired probability. Then P1 = 1/3,
and, for n > 1,

Pn =

(
2n

2n+1

)
Pn−1 +

(
1

2n+1

)
(1−Pn−1)

=

(
2n−1
2n+1

)
Pn−1 +

1
2n+1

.

The recurrence yields P2 = 2/5, P3 = 3/7, and by a sim-
ple induction, one then checks that for general n one has
Pn = n/(2n+1).

Note: Richard Stanley points out the following nonin-
ductive argument. Put f (x) = ∏

n
k=1(x+ 2k)/(2k+ 1);

then the coefficient of xi in f (x) is the probability of
getting exactly i heads. Thus the desired number is
( f (1)− f (−1))/2, and both values of f can be com-
puted directly: f (1) = 1, and

f (−1) =
1
3
× 3

5
×·· ·× 2n−1

2n+1
=

1
2n+1

.

A–3 By the quadratic formula, if Pm(x) = 0, then x2 = m±
2
√

2m+2, and hence the four roots of Pm are given by
S = {±

√
m±
√

2}. If Pm factors into two nonconstant
polynomials over the integers, then some subset of S
consisting of one or two elements form the roots of a
polynomial with integer coefficients.

First suppose this subset has a single element, say√
m±
√

2; this element must be a rational number.
Then (

√
m±
√

2)2 = 2+m± 2
√

2m is an integer, so
m is twice a perfect square, say m = 2n2. But then√

m±
√

2 = (n± 1)
√

2 is only rational if n = ±1, i.e.,
if m = 2.

Next, suppose that the subset contains two elements;
then we can take it to be one of {

√
m±
√

2}, {
√

2±√
m} or {±(

√
m+
√

2)}. In all cases, the sum and the
product of the elements of the subset must be a rational
number. In the first case, this means 2

√
m ∈Q, so m is

a perfect square. In the second case, we have 2
√

2 ∈Q,
contradiction. In the third case, we have (

√
m+
√

2)2 ∈
Q, or m+2+2

√
2m ∈Q, which means that m is twice

a perfect square.

We conclude that Pm(x) factors into two nonconstant
polynomials over the integers if and only if m is either
a square or twice a square.

Note: a more sophisticated interpretation of this argu-
ment can be given using Galois theory. Namely, if m

is neither a square nor twice a square, then the number
fields Q(

√
m) and Q(

√
2) are distinct quadratic fields,

so their compositum is a number field of degree 4,
whose Galois group acts transitively on {±

√
m±
√

2}.
Thus Pm is irreducible.

A–4 Choose r,s, t so that EC = rBC,FA = sCA,GB = tCB,
and let [XY Z] denote the area of triangle XY Z. Then
[ABE] = [AFE] since the triangles have the same alti-
tude and base. Also [ABE] = (BE/BC)[ABC] = 1− r,
and [ECF ] = (EC/BC)(CF/CA)[ABC] = r(1− s) (e.g.,
by the law of sines). Adding this all up yields

1 = [ABE]+ [ABF ]+ [ECF ]

= 2(1− r)+ r(1− s) = 2− r− rs

or r(1+ s) = 1. Similarly s(1+ t) = t(1+ r) = 1.

Let f : [0,∞)→ [0,∞) be the function given by f (x) =
1/(1 + x); then f ( f ( f (r))) = r. However, f (x) is
strictly decreasing in x, so f ( f (x)) is increasing and
f ( f ( f (x))) is decreasing. Thus there is at most one x
such that f ( f ( f (x))) = x; in fact, since the equation
f (z) = z has a positive root z = (−1+

√
5)/2, we must

have r = s = t = z.

We now compute [ABF ] = (AF/AC)[ABC] = z, [ABR] =
(BR/BF)[ABF ] = z/2, analogously [BCS] = [CAT ] =
z/2, and [RST ] = |[ABC]− [ABR]− [BCS]− [CAT ]| =
|1−3z/2|= 7−3

√
5

4 .

Note: the key relation r(1+ s) = 1 can also be derived
by computing using homogeneous coordinates or vec-
tors.

A–5 Suppose an+1− (a+ 1)n = 2001. Notice that an+1 +
[(a+ 1)n− 1] is a multiple of a; thus a divides 2002 =
2×7×11×13.

Since 2001 is divisible by 3, we must have a ≡ 1
(mod 3), otherwise one of an+1 and (a+1)n is a multi-
ple of 3 and the other is not, so their difference cannot
be divisible by 3. Now an+1 ≡ 1 (mod 3), so we must
have (a+1)n ≡ 1 (mod 3), which forces n to be even,
and in particular at least 2.

If a is even, then an+1−(a+1)n ≡−(a+1)n (mod 4).
Since n is even, −(a + 1)n ≡ −1 (mod 4). Since
2001 ≡ 1 (mod 4), this is impossible. Thus a is odd,
and so must divide 1001 = 7× 11× 13. Moreover,
an+1− (a+1)n ≡ a (mod 4), so a≡ 1 (mod 4).

Of the divisors of 7×11×13, those congruent to 1 mod
3 are precisely those not divisible by 11 (since 7 and 13
are both congruent to 1 mod 3). Thus a divides 7×13.
Now a≡ 1 (mod 4) is only possible if a divides 13.
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We cannot have a = 1, since 1− 2n 6= 2001 for any n.
Thus the only possibility is a = 13. One easily checks
that a = 13,n = 2 is a solution; all that remains is to
check that no other n works. In fact, if n > 2, then
13n+1 ≡ 2001 ≡ 1 (mod 8). But 13n+1 ≡ 13 (mod 8)
since n is even, contradiction. Thus a = 13,n = 2 is the
unique solution.

Note: once one has that n is even, one can use that
2002 = an+1 +1− (a+1)n is divisible by a+1 to rule
out cases.

A–6 The answer is yes. Consider the arc of the parabola
y = Ax2 inside the circle x2 +(y− 1)2 = 1, where we
initially assume that A > 1/2. This intersects the circle
in three points, (0,0) and (±

√
2A−1/A,(2A− 1)/A).

We claim that for A sufficiently large, the length L of
the parabolic arc between (0,0) and (

√
2A−1/A,(2A−

1)/A) is greater than 2, which implies the desired result
by symmetry. We express L using the usual formula for
arclength:

L =
∫ √2A−1/A

0

√
1+(2Ax)2 dx

=
1

2A

∫ 2
√

2A−1

0

√
1+ x2 dx

= 2+
1

2A

(∫ 2
√

2A−1

0
(
√

1+ x2− x)dx−2

)
,

where we have artificially introduced −x into the inte-
grand in the last step. Now, for x≥ 0,√
1+ x2− x =

1√
1+ x2 + x

>
1

2
√

1+ x2
≥ 1

2(x+1)
;

since
∫

∞

0 dx/(2(x+1)) diverges, so does
∫

∞

0 (
√

1+ x2−
x)dx. Hence, for sufficiently large A, we have∫ 2
√

2A−1
0 (

√
1+ x2− x)dx > 2, and hence L > 2.

Note: a numerical computation shows that one must
take A > 34.7 to obtain L > 2, and that the maximum
value of L is about 4.0027, achieved for A≈ 94.1.

B–1 Let R (resp. B) denote the set of red (resp. black) squares
in such a coloring, and for s∈ R∪B, let f (s)n+g(s)+1
denote the number written in square s, where 0 ≤
f (s),g(s) ≤ n− 1. Then it is clear that the value of
f (s) depends only on the row of s, while the value of
g(s) depends only on the column of s. Since every row
contains exactly n/2 elements of R and n/2 elements of
B,

∑
s∈R

f (s) = ∑
s∈B

f (s).

Similarly, because every column contains exactly n/2
elements of R and n/2 elements of B,

∑
s∈R

g(s) = ∑
s∈B

g(s).

It follows that

∑
s∈R

f (s)n+g(s)+1 = ∑
s∈B

f (s)n+g(s)+1,

as desired.

Note: Richard Stanley points out a theorem of Ryser
(see Ryser, Combinatorial Mathematics, Theorem 3.1)
that can also be applied. Namely, if A and B are 0−
1 matrices with the same row and column sums, then
there is a sequence of operations on 2× 2 matrices of
the form (

0 1
1 0

)
→
(

1 0
0 1

)
or vice versa, which transforms A into B. If we iden-
tify 0 and 1 with red and black, then the given color-
ing and the checkerboard coloring both satisfy the sum
condition. Since the desired result is clearly true for the
checkerboard coloring, and performing the matrix op-
erations does not affect this, the desired result follows
in general.

B–2 By adding and subtracting the two given equations, we
obtain the equivalent pair of equations

2/x = x4 +10x2y2 +5y4

1/y = 5x4 +10x2y2 + y4.

Multiplying the former by x and the latter by y, then
adding and subtracting the two resulting equations, we
obtain another pair of equations equivalent to the given
ones,

3 = (x+ y)5, 1 = (x− y)5.

It follows that x = (31/5 +1)/2 and y = (31/5−1)/2 is
the unique solution satisfying the given equations.

B–3 Since (k−1/2)2 = k2− k+1/4 and (k+1/2)2 = k2 +
k+1/4, we have that 〈n〉= k if and only if k2−k+1≤
n≤ k2 + k. Hence

∞

∑
n=1

2〈n〉+2−〈n〉

2n =
∞

∑
k=1

∑
n,〈n〉=k

2〈n〉+2−〈n〉

2n

=
∞

∑
k=1

k2+k

∑
n=k2−k+1

2k +2−k

2n

=
∞

∑
k=1

(2k +2−k)(2−k2+k−2−k2−k)

=
∞

∑
k=1

(2−k(k−2)−2−k(k+2))

=
∞

∑
k=1

2−k(k−2)−
∞

∑
k=3

2−k(k−2)

= 3.
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Alternate solution: rewrite the sum as ∑
∞
n=1 2−(n+〈n〉)+

∑
∞
n=1 2−(n−〈n〉). Note that 〈n〉 6= 〈n+ 1〉 if and only if

n = m2 +m for some m. Thus n+ 〈n〉 and n−〈n〉 each
increase by 1 except at n = m2 +m, where the former
skips from m2+2m to m2+2m+2 and the latter repeats
the value m2. Thus the sums are

∞

∑
n=1

2−n−
∞

∑
m=1

2−m2
+

∞

∑
n=0

2−n +
∞

∑
m=1

2−m2
= 2+1 = 3.

B–4 For a rational number p/q expressed in lowest terms,
define its height H(p/q) to be |p|+ |q|. Then for
any p/q ∈ S expressed in lowest terms, we have
H( f (p/q)) = |q2− p2|+ |pq|; since by assumption p
and q are nonzero integers with |p| 6= |q|, we have

H( f (p/q))−H(p/q) = |q2− p2|+ |pq|− |p|− |q|
≥ 3+ |pq|− |p|− |q|
= (|p|−1)(|q|−1)+2≥ 2.

It follows that f (n)(S) consists solely of numbers of
height strictly larger than 2n+2, and hence

∩∞
n=1 f (n)(S) = /0.

Note: many choices for the height function are possible:
one can take H(p/q) = max |p|, |q|, or H(p/q) equal to
the total number of prime factors of p and q, and so
on. The key properties of the height function are that
on one hand, there are only finitely many rationals with
height below any finite bound, and on the other hand,
the height function is a sufficiently “algebraic” function
of its argument that one can relate the heights of p/q
and f (p/q).

B–5 Note that g(x) = g(y) implies that g(g(x)) = g(g(y))
and hence x = y from the given equation. That is, g is
injective. Since g is also continuous, g is either strictly
increasing or strictly decreasing. Moreover, g cannot
tend to a finite limit L as x→ +∞, or else we’d have
g(g(x))− ag(x) = bx, with the left side bounded and
the right side unbounded. Similarly, g cannot tend to
a finite limit as x→−∞. Together with monotonicity,
this yields that g is also surjective.

Pick x0 arbitrary, and define xn for all n ∈ Z recursively
by xn+1 = g(xn) for n> 0, and xn−1 = g−1(xn) for n< 0.
Let r1 = (a+

√
a2 +4b)/2 and r2 = (a−

√
a2 +4b)/2

and r2 be the roots of x2−ax−b= 0, so that r1 > 0> r2
and 1 > |r1|> |r2|. Then there exist c1,c2 ∈R such that
xn = c1rn

1 + c2rn
2 for all n ∈ Z.

Suppose g is strictly increasing. If c2 6= 0 for some
choice of x0, then xn is dominated by rn

2 for n suffi-
ciently negative. But taking xn and xn+2 for n suffi-
ciently negative of the right parity, we get 0 < xn < xn+2
but g(xn) > g(xn+2), contradiction. Thus c2 = 0; since
x0 = c1 and x1 = c1r1, we have g(x) = r1x for all x.
Analogously, if g is strictly decreasing, then c2 = 0 or
else xn is dominated by rn

1 for n sufficiently positive.
But taking xn and xn+2 for n sufficiently positive of the
right parity, we get 0 < xn+2 < xn but g(xn+2) < g(xn),
contradiction. Thus in that case, g(x) = r2x for all x.

B–6 Yes, there must exist infinitely many such n. Let S be
the convex hull of the set of points (n,an) for n≥ 0. Ge-
ometrically, S is the intersection of all convex sets (or
even all halfplanes) containing the points (n,an); alge-
braically, S is the set of points (x,y) which can be writ-
ten as c1(n1,an1)+ · · ·+ ck(nk,ank) for some c1, . . . ,ck
which are nonnegative of sum 1.

We prove that for infinitely many n, (n,an) is a vertex
on the upper boundary of S, and that these n satisfy the
given condition. The condition that (n,an) is a vertex on
the upper boundary of S is equivalent to the existence of
a line passing through (n,an) with all other points of S
below it. That is, there should exist m > 0 such that

ak < an +m(k−n) ∀k ≥ 1. (1)

We first show that n = 1 satisfies (1). The condition
ak/k→ 0 as k→ ∞ implies that (ak−a1)/(k−1)→ 0
as well. Thus the set {(ak− a1)/(k− 1)} has an upper
bound m, and now ak ≤ a1 +m(k−1), as desired.

Next, we show that given one n satisfying (1), there ex-
ists a larger one also satisfying (1). Again, the condition
ak/k→ 0 as k→ ∞ implies that (ak−an)/(k−n)→ 0
as k→ ∞. Thus the sequence {(ak − an)/(k− n)}k>n
has a maximum element; suppose k = r is the largest
value that achieves this maximum, and put m = (ar −
an)/(r−n). Then the line through (r,ar) of slope m lies
strictly above (k,ak) for k > r and passes through or lies
above (k,ak) for k < r. Thus (1) holds for n = r with m
replaced by m− ε for suitably small ε > 0.

By induction, we have that (1) holds for infinitely many
n. For any such n there exists m > 0 such that for i =
1, . . . ,n− 1, the points (n− i,an−i) and (n+ i,an+i) lie
below the line through (n,an) of slope m. That means
an+i < an+mi and an−i < an−mi; adding these together
gives an−i +an+i < 2an, as desired.


