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A–1 By differentiating Pn(x)/(xk − 1)n+1, we find that
Pn+1(x) = (xk − 1)P′n(x)− (n + 1)kxk−1Pn(x); substi-
tuting x = 1 yields Pn+1(1) = −(n+ 1)kPn(1). Since
P0(1) = 1, an easy induction gives Pn(1) = (−k)nn! for
all n≥ 0.

Note: one can also argue by expanding in Taylor series
around 1. Namely, we have

1
xk−1

=
1

k(x−1)+ · · ·
=

1
k
(x−1)−1 + · · · ,

so

dn

dxn
1

xk−1
=

(−1)nn!
k(x−1)−n−1

and

Pn(x) = (xk−1)n+1 dn

dxn
1

xk−1

= (k(x−1)+ · · ·)n+1
(
(−1)nn!

k
(x−1)−n−1 + · · ·

)
= (−k)nn!+ · · · .

A–2 Draw a great circle through two of the points. There are
two closed hemispheres with this great circle as bound-
ary, and each of the other three points lies in one of
them. By the pigeonhole principle, two of those three
points lie in the same hemisphere, and that hemisphere
thus contains four of the five given points.

Note: by a similar argument, one can prove that among
any n+3 points on an n-dimensional sphere, some n+2
of them lie on a closed hemisphere. (One cannot get by
with only n+2 points: put them at the vertices of a reg-
ular simplex.) Namely, any n of the points lie on a great
sphere, which forms the boundary of two hemispheres;
of the remaining three points, some two lie in the same
hemisphere.

A–3 Note that each of the sets {1},{2}, . . . ,{n} has the de-
sired property. Moreover, for each set S with inte-
ger average m that does not contain m, S ∪ {m} also
has average m, while for each set T of more than
one element with integer average m that contains m,
T \{m} also has average m. Thus the subsets other than
{1},{2}, . . . ,{n} can be grouped in pairs, so Tn− n is
even.

A–4 (partly due to David Savitt) Player 0 wins with opti-
mal play. In fact, we prove that Player 1 cannot prevent
Player 0 from creating a row of all zeroes, a column of
all zeroes, or a 2× 2 submatrix of all zeroes. Each of
these forces the determinant of the matrix to be zero.

For i, j = 1,2,3, let Ai j denote the position in row i and
column j. Without loss of generality, we may assume
that Player 1’s first move is at A11. Player 0 then plays
at A22: 1 ∗ ∗

∗ 0 ∗
∗ ∗ ∗


After Player 1’s second move, at least one of A23 and
A32 remains vacant. Without loss of generality, assume
A23 remains vacant; Player 0 then plays there.

After Player 1’s third move, Player 0 wins by playing
at A21 if that position is unoccupied. So assume instead
that Player 1 has played there. Thus of Player 1’s three
moves so far, two are at A11 and A21. Hence for i equal
to one of 1 or 3, and for j equal to one of 2 or 3, the
following are both true:

(a) The 2× 2 submatrix formed by rows 2 and i and
by columns 2 and 3 contains two zeroes and two
empty positions.

(b) Column j contains one zero and two empty posi-
tions.

Player 0 next plays at Ai j. To prevent a zero column,
Player 1 must play in column j, upon which Player 0
completes the 2×2 submatrix in (a) for the win.

Note: one can also solve this problem directly by mak-
ing a tree of possible play sequences. This tree can be
considerably collapsed using symmetries: the symme-
try between rows and columns, the invariance of the
outcome under reordering of rows or columns, and the
fact that the scenario after a sequence of moves does
not depend on the order of the moves (sometimes called
“transposition invariance”).

Note (due to Paul Cheng): one can reduce Determi-
nant Tic-Tac-Toe to a variant of ordinary tic-tac-toe.
Namely, consider a tic-tac-toe grid labeled as follows:

A11 A22 A33

A23 A31 A12

A32 A13 A21

Then each term in the expansion of the determinant oc-
curs in a row or column of the grid. Suppose Player
1 first plays in the top left. Player 0 wins by playing
first in the top row, and second in the left column. Then
there are only one row and column left for Player 1 to
threaten, and Player 1 cannot already threaten both on
the third move, so Player 0 has time to block both.
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A–5 It suffices to prove that for any relatively prime positive
integers r,s, there exists an integer n with an = r and
an+1 = s. We prove this by induction on r+ s, the case
r+s= 2 following from the fact that a0 = a1 = 1. Given
r and s not both 1 with gcd(r,s) = 1, we must have r 6=
s. If r > s, then by the induction hypothesis we have
an = r− s and an+1 = s for some n; then a2n+2 = r and
a2n+3 = s. If r < s, then we have an = r and an+1 = s−r
for some n; then a2n+1 = r and a2n+2 = s.

Note: a related problem is as follows. Starting with the
sequence

0
1
,

1
0
,

repeat the following operation: insert between each pair
a
b and c

d the pair a+c
b+d . Prove that each positive rational

number eventually appears.

Observe that by induction, if a
b and c

d are consecutive
terms in the sequence, then bc−ad = 1. The same holds
for consecutive terms of the n-th Farey sequence, the
sequence of rational numbers in [0,1] with denominator
(in lowest terms) at most n.

A–6 The sum converges for b= 2 and diverges for b≥ 3. We
first consider b ≥ 3. Suppose the sum converges; then
the fact that f (n) = n f (d) whenever bd−1 ≤ n≤ bd−1
yields

∞

∑
n=1

1
f (n)

=
∞

∑
d=1

1
f (d)

bd−1

∑
n=bd−1

1
n
. (1)

However, by comparing the integral of 1/x with a Rie-
mann sum, we see that

bd−1

∑
n=bd−1

1
n
>
∫ bd

bd−1

dx
x

= log(bd)− log(bd−1) = logb,

where log denotes the natural logarithm. Thus (1) yields

∞

∑
n=1

1
f (n)

> (logb)
∞

∑
n=1

1
f (n)

,

a contradiction since logb > 1 for b≥ 3. Therefore the
sum diverges.

For b = 2, we have a slightly different identity because
f (2) 6= 2 f (2). Instead, for any positive integer i, we
have

2i−1

∑
n=1

1
f (n)

= 1+
1
2
+

1
6
+

i

∑
d=3

1
f (d)

2d−1

∑
n=2d−1

1
n
. (2)

Again comparing an integral to a Riemann sum, we see

that for d ≥ 3,

2d−1

∑
n=2d−1

1
n
<

1
2d−1 −

1
2d +

∫ 2d

2d−1

dx
x

=
1
2d + log2

≤ 1
8
+ log2 < 0.125+0.7 < 1.

Put c = 1
8 + log2 and L = 1+ 1

2 +
1

6(1−c) . Then we can

prove that ∑
2i−1
n=1

1
f (n) < L for all i≥ 2 by induction on i.

The case i = 2 is clear. For the induction, note that by
(2),

2i−1

∑
n=1

1
f (n)

< 1+
1
2
+

1
6
+ c

i

∑
d=3

1
f (d)

< 1+
1
2
+

1
6
+ c

1
6(1− c)

= 1+
1
2
+

1
6(1− c)

= L,

as desired. We conclude that ∑
∞
n=1

1
f (n) converges to a

limit less than or equal to L.

Note: the above argument proves that the sum for b = 2
is at most L < 2.417. One can also obtain a lower
bound by the same technique, namely 1+ 1

2 +
1

6(1−c′)
with c′ = log2. This bound exceeds 2.043. (By con-
trast, summing the first 100000 terms of the series only
yields a lower bound of 1.906.) Repeating the same ar-
guments with d ≥ 4 as the cutoff yields the upper bound
2.185 and the lower bound 2.079.

B–1 The probability is 1/99. In fact, we show by induction
on n that after n shots, the probability of having made
any number of shots from 1 to n−1 is equal to 1/(n−
1). This is evident for n = 2. Given the result for n,
we see that the probability of making i shots after n+1
attempts is

i−1
n

1
n−1

+

(
1− i

n

)
1

n−1
=

(i−1)+(n− i)
n(n−1)

=
1
n
,

as claimed.

B–2 (Note: the problem statement assumes that all polyhe-
dra are connected and that no two edges share more than
one face, so we will do likewise. In particular, these are
true for all convex polyhedra.) We show that in fact
the first player can win on the third move. Suppose the
polyhedron has a face A with at least four edges. If the
first player plays there first, after the second player’s
first move there will be three consecutive faces B,C,D
adjacent to A which are all unoccupied. The first player
wins by playing in C; after the second player’s second
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move, at least one of B and D remains unoccupied, and
either is a winning move for the first player.

It remains to show that the polyhedron has a face with
at least four edges. (Thanks to Russ Mann for suggest-
ing the following argument.) Suppose on the contrary
that each face has only three edges. Starting with any
face F1 with vertices v1,v2,v3, let v4 be the other end-
point of the third edge out of v1. Then the faces ad-
jacent to F1 must have vertices v1,v2,v4; v1,v3,v4; and
v2,v3,v4. Thus v1,v2,v3,v4 form a polyhedron by them-
selves, contradicting the fact that the given polyhedron
is connected and has at least five vertices. (One can also
deduce this using Euler’s formula V −E +F = 2−2g,
where V,E,F are the numbers of vertices, edges and
faces, respectively, and g is the genus of the polyhe-
dron. For a convex polyhedron, g = 0 and you get the
“usual” Euler’s formula.)

Note: Walter Stromquist points out the following coun-
terexample if one relaxes the assumption that a pair of
faces may not share multiple edges. Take a tetrahedron
and remove a smaller tetrahedron from the center of an
edge; this creates two small triangular faces and turns
two of the original faces into hexagons. Then the sec-
ond player can draw by signing one of the hexagons,
one of the large triangles, and one of the small trian-
gles. (He does this by “mirroring”: wherever the first
player signs, the second player signs the other face of
the same type.)

B–3 The desired inequalities can be rewritten as

1− 1
n
< exp

(
1+n log

(
1− 1

n

))
< 1− 1

2n
.

By taking logarithms, we can rewrite the desired in-
equalities as

− log
(

1− 1
2n

)
<−1−n log

(
1− 1

n

)
<− log

(
1− 1

n

)
.

Rewriting these in terms of the Taylor expansion of
− log(1−x), we see that the desired result is also equiv-
alent to

∞

∑
i=1

1
i2ini <

∞

∑
i=1

1
(i+1)ni <

∞

∑
i=1

1
ini ,

which is evident because the inequalities hold term by
term.

Note: David Savitt points out that the upper bound can
be improved from 1/(ne) to 2/(3ne) with a slightly
more complicated argument. (In fact, for any c > 1/2,
one has an upper bound of c/(ne), but only for n above
a certain bound depending on c.)

B–4 Use the following strategy: guess 1,3,4,6,7,9, . . . until
the target number n is revealed to be equal to or lower

than one of these guesses. If n ≡ 1 (mod 3), it will be
guessed on an odd turn. If n ≡ 0 (mod 3), it will be
guessed on an even turn. If n ≡ 2 (mod 3), then n+ 1
will be guessed on an even turn, forcing a guess of n on
the next turn. Thus the probability of success with this
strategy is 1335/2002 > 2/3.

Note: for any positive integer m, this strategy wins
when the number is being guessed from [1,m] with
probability 1

mb
2m+1

3 c. We can prove that this is best
possible as follows. Let am denote m times the proba-
bility of winning when playing optimally. Also, let bm
denote m times the corresponding probability of win-
ning if the objective is to select the number in an even
number of guesses instead. (For definiteness, extend the
definitions to incorporate a0 = 0 and b0 = 0.)

We first claim that am = 1+max1≤k≤m{bk−1 + bm−k}
and bm = max1≤k≤m{ak−1 + am−k} for m ≥ 1. To
establish the first recursive identity, suppose that our
first guess is some integer k. We automatically win if
n = k, with probability 1/m. If n < k, with probability
(k−1)/m, then we wish to guess an integer in [1,k−1]
in an even number of guesses; the probability of success
when playing optimally is bk−1/(k−1), by assumption.
Similarly, if n < k, with probability (m−k)/m, then the
subsequent probability of winning is bm−k/(m− k). In
sum, the overall probability of winning if k is our first
guess is (1+bk−1 +bm−k)/m. For optimal strategy, we
choose k such that this quantity is maximized. (Note
that this argument still holds if k = 1 or k = m, by our
definitions of a0 and b0.) The first recursion follows,
and the second recursion is established similarly.

We now prove by induction that am = b(2m+1)/3c and
bm = b2m/3c for m≥ 0. The inductive step relies on the
inequality bxc+ byc ≤ bx+ yc, with equality when one
of x,y is an integer. Now suppose that ai = b(2i+1)/3c
and bi = b2i/3c for i < m. Then

1+bk−1 +bm−k = 1+
⌊

2(k−1)
3

⌋
+

⌊
2(m− k)

3

⌋
≤
⌊

2m
3

⌋
and similarly ak−1 +am−k ≤ b(2m+1)/3c, with equal-
ity in both cases attained, e.g., when k = 1. The induc-
tive formula for am and bm follows.

B–5 (due to Dan Bernstein) Put N = 2002!. Then for d =
1, . . . ,2002, the number N2 written in base b = N/d−1
has digits d2,2d2,d2. (Note that these really are digits
because 2(2002)2 < (2002!)2/2002−1.)

Note: one can also produce an integer N which has base
b digits 1,∗,1 for n different values of b, as follows.
Choose c with 0 < c < 21/n. For m a large positive in-
teger, put N = 1+(m+ 1) · · ·(m+ n)bcmcn−2. For m
sufficiently large, the bases

b =
N−1

(m+ i)mn−2 = ∏
j 6=i

(m+ j)
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for i = 1, . . . ,n will have the properties that N ≡ 1
(mod b) and b2 < N < 2b2 for m sufficiently large.

Note (due to Russ Mann): one can also give a “noncon-
structive” argument. Let N be a large positive integer.
For b ∈ (N2,N3), the number of 3-digit base-b palin-
dromes in the range [b2,N6−1] is at least⌊

N6−b2

b

⌋
−1≥ N6

b2 −b−2,

since there is a palindrome in each interval [kb,(k +
1)b− 1] for k = b, . . . ,b2− 1. Thus the average num-
ber of bases for which a number in [1,N6−1] is at least

1
N6

N3−1

∑
b=N2+1

(
N6

b
−b−2

)
≥ log(N)− c

for some constant c > 0. Take N so that the right side
exceeds 2002; then at least one number in [1,N6−1] is
a base-b palindrome for at least 2002 values of b.

B–6 We prove that the determinant is congruent modulo p to

x
p−1

∏
i=0

(y+ ix)
p−1

∏
i, j=0

(z+ ix+ jy). (3)

We first check that

p−1

∏
i=0

(y+ ix)≡ yp− xp−1y (mod p). (4)

Since both sides are homogeneous as polynomials in x
and y, it suffices to check (4) for x = 1, as a congruence
between polynomials. Now note that the right side has
0,1, . . . , p− 1 as roots modulo p, as does the left side.
Moreover, both sides have the same leading coefficient.
Since they both have degree only p, they must then co-
incide.

We thus have

x
p−1

∏
i=0

(y+ ix)
p−1

∏
i, j=0

(z+ ix+ jy)

≡ x(yp− xp−1y)
p−1

∏
j=0

((z+ jy)p− xp−1(z+ jy))

≡ (xyp− xpy)
p−1

∏
j=0

(zp− xp−1z+ jyp− jxp−1y)

≡ (xyp− xpy)((zp− xp−1z)p

− (yp− xp−1y)p−1(zp− xp−1z))

≡ (xyp− xpy)(zp2 − xp2−pzp)

− x(yp− xp−1y)p(zp− xp−1z)

≡ xypzp2 − xpyzp2 − xp2−p+1ypzp + xp2
yzp

− xyp2
zp + xp2−p+1ypzp + xpyp2

z− xp2
ypz

≡ xypzp2
+ yzpxp2

+ zxpyp2

− xzpyp2 − yxpzp2 − zypxp2
,

which is precisely the desired determinant.

Note: a simpler conceptual proof is as follows. (Every-
thing in this paragraph will be modulo p.) Note that
for any integers a,b,c, the column vector [ax + by +
cz,(ax + by + cz)p,(ax + by + cz)p2

] is a linear com-
bination of the columns of the given matrix. Thus
ax+ by+ cz divides the determinant. In particular, all
of the factors of (3) divide the determinant; since both
(3) and the determinant have degree p2 + p+ 1, they
agree up to a scalar multiple. Moreover, they have the
same coefficient of zp2

ypx (since this term only appears
in the expansion of (3) when you choose the first term
in each factor). Thus the determinant is congruent to
(3), as desired.

Either argument can be used to generalize to a corre-
sponding n× n determinant, called a Moore determi-
nant; we leave the precise formulation to the reader.
Note the similarity with the classical Vandermonde de-
terminant: if A is the n× n matrix with Ai j = x j

i for
i, j = 0, . . . ,n−1, then

det(A) = ∏
1≤i< j≤n

(x j− xi).


