The 64th William Lowell Putnam Mathematical Competition
 Saturday, December 6, 2003

A1 Let n be a fixed positive integer. How many ways are there to write n as a sum of positive integers,

$$
n=a_{1}+a_{2}+\cdots+a_{k}
$$

with k an arbitrary positive integer and $a_{1} \leq a_{2} \leq \cdots \leq$ $a_{k} \leq a_{1}+1$? For example, with $n=4$ there are four ways: $4,2+2,1+1+2,1+1+1+1$.

A2 Let $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ be nonnegative real numbers. Show that

$$
\begin{aligned}
& \left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}+\left(b_{1} b_{2} \cdots b_{n}\right)^{1 / n} \\
& \leq\left[\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right) \cdots\left(a_{n}+b_{n}\right)\right]^{1 / n}
\end{aligned}
$$

A3 Find the minimum value of

$$
|\sin x+\cos x+\tan x+\cot x+\sec x+\csc x|
$$

for real numbers x.
A4 Suppose that a, b, c, A, B, C are real numbers, $a \neq 0$ and $A \neq 0$, such that

$$
\left|a x^{2}+b x+c\right| \leq\left|A x^{2}+B x+C\right|
$$

for all real numbers x. Show that

$$
\left|b^{2}-4 a c\right| \leq\left|B^{2}-4 A C\right|
$$

A5 A Dyck n-path is a lattice path of n upsteps $(1,1)$ and n downsteps $(1,-1)$ that starts at the origin O and never dips below the x-axis. A return is a maximal sequence of contiguous downsteps that terminates on the x-axis. For example, the Dyck 5-path illustrated has two returns, of length 3 and 1 respectively.

Show that there is a one-to-one correspondence between the Dyck n-paths with no return of even length and the Dyck $(n-1)$-paths.

A6 For a set S of nonnegative integers, let $r_{S}(n)$ denote the number of ordered pairs $\left(s_{1}, s_{2}\right)$ such that $s_{1} \in S, s_{2} \in S$, $s_{1} \neq s_{2}$, and $s_{1}+s_{2}=n$. Is it possible to partition the nonnegative integers into two sets A and B in such a way that $r_{A}(n)=r_{B}(n)$ for all n ?

B1 Do there exist polynomials $a(x), b(x), c(y), d(y)$ such that

$$
1+x y+x^{2} y^{2}=a(x) c(y)+b(x) d(y)
$$

holds identically?

B2 Let n be a positive integer. Starting with the sequence $1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}$, form a new sequence of $n-1$ entries $\frac{3}{4}, \frac{5}{12}, \ldots, \frac{2 n-1}{2 n(n-1)}$ by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of $n-2$ entries, and continue until the final sequence produced consists of a single number x_{n}. Show that $x_{n}<2 / n$.

B3 Show that for each positive integer n,

$$
n!=\prod_{i=1}^{n} \operatorname{lcm}\{1,2, \ldots,\lfloor n / i\rfloor\}
$$

(Here lcm denotes the least common multiple, and $\lfloor x\rfloor$ denotes the greatest integer $\leq x$.)

B4 Let $f(z)=a z^{4}+b z^{3}+c z^{2}+d z+e=a\left(z-r_{1}\right)(z-$ $\left.r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right)$ where a, b, c, d, e are integers, $a \neq 0$. Show that if $r_{1}+r_{2}$ is a rational number and $r_{1}+r_{2} \neq$ $r_{3}+r_{4}$, then $r_{1} r_{2}$ is a rational number.

B5 Let A, B, and C be equidistant points on the circumference of a circle of unit radius centered at O, and let P be any point in the circle's interior. Let a, b, c be the distance from P to A, B, C, respectively. Show that there is a triangle with side lengths a, b, c, and that the area of this triangle depends only on the distance from P to O.

B6 Let $f(x)$ be a continuous real-valued function defined on the interval $[0,1]$. Show that

$$
\int_{0}^{1} \int_{0}^{1}|f(x)+f(y)| d x d y \geq \int_{0}^{1}|f(x)| d x
$$

