The 65th William Lowell Putnam Mathematical Competition Saturday, December 4, 2004

- A1 Basketball star Shanille O'Keal's team statistician keeps track of the number, S(N), of successful free throws she has made in her first *N* attempts of the season. Early in the season, S(N) was less than 80% of *N*, but by the end of the season, S(N) was more than 80% of *N*. Was there necessarily a moment in between when S(N) was exactly 80% of *N*?
- A2 For i = 1, 2 let T_i be a triangle with side lengths a_i, b_i, c_i , and area A_i . Suppose that $a_1 \le a_2, b_1 \le b_2, c_1 \le c_2$, and that T_2 is an acute triangle. Does it follow that $A_1 \le A_2$?
- A3 Define a sequence $\{u_n\}_{n=0}^{\infty}$ by $u_0 = u_1 = u_2 = 1$, and thereafter by the condition that

$$\det \begin{pmatrix} u_n & u_{n+1} \\ u_{n+2} & u_{n+3} \end{pmatrix} = n!$$

for all $n \ge 0$. Show that u_n is an integer for all n. (By convention, 0! = 1.)

A4 Show that for any positive integer *n* there is an integer *N* such that the product $x_1x_2\cdots x_n$ can be expressed identically in the form

$$x_1 x_2 \cdots x_n = \sum_{i=1}^N c_i (a_{i1} x_1 + a_{i2} x_2 + \dots + a_{in} x_n)^n$$

where the c_i are rational numbers and each a_{ij} is one of the numbers -1, 0, 1.

- A5 An $m \times n$ checkerboard is colored randomly: each square is independently assigned red or black with probability 1/2. We say that two squares, p and q, are in the same connected monochromatic region if there is a sequence of squares, all of the same color, starting at p and ending at q, in which successive squares in the sequence share a common side. Show that the expected number of connected monochromatic regions is greater than mn/8.
- A6 Suppose that f(x,y) is a continuous real-valued function on the unit square $0 \le x \le 1, 0 \le y \le 1$. Show that

$$\int_0^1 \left(\int_0^1 f(x,y) dx \right)^2 dy + \int_0^1 \left(\int_0^1 f(x,y) dy \right)^2 dx$$

$$\leq \left(\int_0^1 \int_0^1 f(x,y) dx dy \right)^2 + \int_0^1 \int_0^1 [f(x,y)]^2 dx dy.$$

B1 Let $P(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_0$ be a polynomial with integer coefficients. Suppose that *r* is a rational number such that P(r) = 0. Show that the *n* numbers

$$c_n r, c_n r^2 + c_{n-1} r, c_n r^3 + c_{n-1} r^2 + c_{n-2} r,$$

..., $c_n r^n + c_{n-1} r^{n-1} + \dots + c_1 r$

are integers.

B2 Let m and n be positive integers. Show that

$$\frac{(m+n)!}{(m+n)^{m+n}} < \frac{m!}{m^m} \frac{n!}{n^n}$$

B3 Determine all real numbers a > 0 for which there exists a nonnegative continuous function f(x) defined on [0, a]with the property that the region

$$R = \{(x, y); 0 \le x \le a, 0 \le y \le f(x)\}$$

has perimeter k units and area k square units for some real number k.

- B4 Let *n* be a positive integer, $n \ge 2$, and put $\theta = 2\pi/n$. Define points $P_k = (k, 0)$ in the *xy*-plane, for k = 1, 2, ..., n. Let R_k be the map that rotates the plane counterclockwise by the angle θ about the point P_k . Let *R* denote the map obtained by applying, in order, R_1 , then $R_2, ...,$ then R_n . For an arbitrary point (x, y), find, and simplify, the coordinates of R(x, y).
- B5 Evaluate

$$\lim_{x \to 1^{-}} \prod_{n=0}^{\infty} \left(\frac{1+x^{n+1}}{1+x^n} \right)^{x^n}.$$

B6 Let \mathscr{A} be a non-empty set of positive integers, and let N(x) denote the number of elements of \mathscr{A} not exceeding *x*. Let \mathscr{B} denote the set of positive integers *b* that can be written in the form b = a - a' with $a \in \mathscr{A}$ and $a' \in \mathscr{A}$. Let $b_1 < b_2 < \cdots$ be the members of \mathscr{B} , listed in increasing order. Show that if the sequence $b_{i+1} - b_i$ is unbounded, then

$$\lim_{x \to \infty} N(x)/x = 0.$$