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A1 Basketball star Shanille O’Keal’s team statistician
keeps track of the number, S(N), of successful free
throws she has made in her first N attempts of the sea-
son. Early in the season, S(N) was less than 80% of N,
but by the end of the season, S(N) was more than 80%
of N. Was there necessarily a moment in between when
S(N) was exactly 80% of N?

A2 For i = 1,2 let Ti be a triangle with side lengths ai,bi,ci,
and area Ai. Suppose that a1 ≤ a2,b1 ≤ b2,c1 ≤ c2, and
that T2 is an acute triangle. Does it follow that A1 ≤ A2?

A3 Define a sequence {un}∞
n=0 by u0 = u1 = u2 = 1, and

thereafter by the condition that

det
(

un un+1
un+2 un+3

)
= n!

for all n ≥ 0. Show that un is an integer for all n. (By
convention, 0! = 1.)

A4 Show that for any positive integer n there is an integer N
such that the product x1x2 · · ·xn can be expressed iden-
tically in the form

x1x2 · · ·xn =
N

∑
i=1

ci(ai1x1 +ai2x2 + · · ·+ainxn)
n

where the ci are rational numbers and each ai j is one of
the numbers −1,0,1.

A5 An m × n checkerboard is colored randomly: each
square is independently assigned red or black with
probability 1/2. We say that two squares, p and q, are
in the same connected monochromatic region if there is
a sequence of squares, all of the same color, starting at
p and ending at q, in which successive squares in the
sequence share a common side. Show that the expected
number of connected monochromatic regions is greater
than mn/8.

A6 Suppose that f (x,y) is a continuous real-valued func-
tion on the unit square 0≤ x≤ 1,0≤ y≤ 1. Show that

∫ 1

0

(∫ 1

0
f (x,y)dx

)2

dy+
∫ 1

0

(∫ 1

0
f (x,y)dy

)2

dx

≤
(∫ 1

0

∫ 1

0
f (x,y)dxdy

)2

+
∫ 1

0

∫ 1

0
[ f (x,y)]2 dxdy.

B1 Let P(x) = cnxn + cn−1xn−1 + · · ·+ c0 be a polynomial
with integer coefficients. Suppose that r is a rational
number such that P(r) = 0. Show that the n numbers

cnr, cnr2 + cn−1r, cnr3 + cn−1r2 + cn−2r,

. . . , cnrn + cn−1rn−1 + · · ·+ c1r

are integers.
B2 Let m and n be positive integers. Show that

(m+n)!
(m+n)m+n <

m!
mm

n!
nn .

B3 Determine all real numbers a > 0 for which there exists
a nonnegative continuous function f (x) defined on [0,a]
with the property that the region

R = {(x,y);0≤ x≤ a,0≤ y≤ f (x)}

has perimeter k units and area k square units for some
real number k.

B4 Let n be a positive integer, n≥ 2, and put θ = 2π/n. De-
fine points Pk = (k,0) in the xy-plane, for k = 1,2, . . . ,n.
Let Rk be the map that rotates the plane counterclock-
wise by the angle θ about the point Pk. Let R denote
the map obtained by applying, in order, R1, then R2, . . . ,
then Rn. For an arbitrary point (x,y), find, and simplify,
the coordinates of R(x,y).

B5 Evaluate

lim
x→1−

∞

∏
n=0

(
1+ xn+1

1+ xn

)xn

.

B6 Let A be a non-empty set of positive integers, and let
N(x) denote the number of elements of A not exceed-
ing x. Let B denote the set of positive integers b that
can be written in the form b = a− a′ with a ∈ A and
a′ ∈A . Let b1 < b2 < · · · be the members of B, listed
in increasing order. Show that if the sequence bi+1−bi
is unbounded, then

lim
x→∞

N(x)/x = 0.


