The 65th William Lowell Putnam Mathematical Competition
 Saturday, December 4, 2004

A1 Basketball star Shanille O'Keal's team statistician keeps track of the number, $S(N)$, of successful free throws she has made in her first N attempts of the season. Early in the season, $S(N)$ was less than 80% of N, but by the end of the season, $S(N)$ was more than 80% of N. Was there necessarily a moment in between when $S(N)$ was exactly 80% of $N ?$
A2 For $i=1,2$ let T_{i} be a triangle with side lengths a_{i}, b_{i}, c_{i}, and area A_{i}. Suppose that $a_{1} \leq a_{2}, b_{1} \leq b_{2}, c_{1} \leq c_{2}$, and that T_{2} is an acute triangle. Does it follow that $A_{1} \leq A_{2}$?

A3 Define a sequence $\left\{u_{n}\right\}_{n=0}^{\infty}$ by $u_{0}=u_{1}=u_{2}=1$, and thereafter by the condition that

$$
\operatorname{det}\left(\begin{array}{cc}
u_{n} & u_{n+1} \\
u_{n+2} & u_{n+3}
\end{array}\right)=n!
$$

for all $n \geq 0$. Show that u_{n} is an integer for all n. (By convention, $0!=1$.)

A4 Show that for any positive integer n there is an integer N such that the product $x_{1} x_{2} \cdots x_{n}$ can be expressed identically in the form

$$
x_{1} x_{2} \cdots x_{n}=\sum_{i=1}^{N} c_{i}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}\right)^{n}
$$

where the c_{i} are rational numbers and each $a_{i j}$ is one of the numbers $-1,0,1$.

A5 An $m \times n$ checkerboard is colored randomly: each square is independently assigned red or black with probability $1 / 2$. We say that two squares, p and q, are in the same connected monochromatic region if there is a sequence of squares, all of the same color, starting at p and ending at q, in which successive squares in the sequence share a common side. Show that the expected number of connected monochromatic regions is greater than $m n / 8$.

A6 Suppose that $f(x, y)$ is a continuous real-valued function on the unit square $0 \leq x \leq 1,0 \leq y \leq 1$. Show that

$$
\begin{aligned}
& \int_{0}^{1}\left(\int_{0}^{1} f(x, y) d x\right)^{2} d y+\int_{0}^{1}\left(\int_{0}^{1} f(x, y) d y\right)^{2} d x \\
& \leq\left(\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y\right)^{2}+\int_{0}^{1} \int_{0}^{1}[f(x, y)]^{2} d x d y
\end{aligned}
$$

B1 Let $P(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0}$ be a polynomial with integer coefficients. Suppose that r is a rational number such that $P(r)=0$. Show that the n numbers

$$
\begin{gathered}
c_{n} r, c_{n} r^{2}+c_{n-1} r, c_{n} r^{3}+c_{n-1} r^{2}+c_{n-2} r \\
\ldots, c_{n} r^{n}+c_{n-1} r^{n-1}+\cdots+c_{1} r
\end{gathered}
$$

are integers.
B2 Let m and n be positive integers. Show that

$$
\frac{(m+n)!}{(m+n)^{m+n}}<\frac{m!}{m^{m}} \frac{n!}{n^{n}}
$$

B3 Determine all real numbers $a>0$ for which there exists a nonnegative continuous function $f(x)$ defined on $[0, a]$ with the property that the region

$$
R=\{(x, y) ; 0 \leq x \leq a, 0 \leq y \leq f(x)\}
$$

has perimeter k units and area k square units for some real number k.

B4 Let n be a positive integer, $n \geq 2$, and put $\theta=2 \pi / n$. Define points $P_{k}=(k, 0)$ in the $x y$-plane, for $k=1,2, \ldots, n$. Let R_{k} be the map that rotates the plane counterclockwise by the angle θ about the point P_{k}. Let R denote the map obtained by applying, in order, R_{1}, then R_{2}, \ldots, then R_{n}. For an arbitrary point (x, y), find, and simplify, the coordinates of $R(x, y)$.

B5 Evaluate

$$
\lim _{x \rightarrow 1^{-}} \prod_{n=0}^{\infty}\left(\frac{1+x^{n+1}}{1+x^{n}}\right)^{x^{n}}
$$

B6 Let \mathscr{A} be a non-empty set of positive integers, and let $N(x)$ denote the number of elements of \mathscr{A} not exceeding x. Let \mathscr{B} denote the set of positive integers b that can be written in the form $b=a-a^{\prime}$ with $a \in \mathscr{A}$ and $a^{\prime} \in \mathscr{A}$. Let $b_{1}<b_{2}<\cdots$ be the members of \mathscr{B}, listed in increasing order. Show that if the sequence $b_{i+1}-b_{i}$ is unbounded, then

$$
\lim _{x \rightarrow \infty} N(x) / x=0
$$

