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A-1 Yes. Suppose otherwise. Then there would be an N

such that S(V) < .8N and S(N+1) > .8(N +1); that is,
O’Keal’s free throw percentage is under 80% at some
point, and after one subsequent free throw (necessarily
made), her percentage is over 80%. If she makes m
of her first N free throws, then m/N < 4/5 and (m+
1)/(N+1) > 4/5. This means that 5m < 4n < 5m+1,
which is impossible since then 4# is an integer between
the consecutive integers Sm and 5m + 1.

Remark: This same argument works for any fraction
of the form (n— 1)/n for some integer n > 1, but not
for any other real number between 0 and 1.

A-2 First solution: (partly due to Ravi Vakil) Yes, it does

follow. For i = 1,2, let P;,Q;,R; be the vertices of T;
opposide the sides of length a;, b;, c;, respectively.

We first check the case where a; = ap (or by = by or
c1 = c2, by the same argument after relabeling). Imag-
ine T, as being drawn with the base Q>R; horizontal
and the point P, above the line Q>R,. We may then po-
sition 77 so that Q; = Q», R; = R», and P; lies above
the line Q1R; = Q»R,. Then P; also lies inside the re-
gion bounded by the circles through P> centered at Q5
and R,. Since Z(Q» and ZR; are acute, the part of this
region above the line Q>R; lies within 7. In particu-
lar, the distance from P; to the line Q»R, is less than or
equal to the distance from P, to the line Q>R;; hence
Al <A,

To deduce the general case, put
r= max{al/az,bl/bz,cl/cz}.

Let T3 be the triangle with sides ray, by, rco, which has
area r°A,. Applying the special case to T} and T3, we
deduce that A; < r?A,; since r < 1 by hypothesis, we
have A1 < A, as desired.

Remark: Another geometric argument in the case a; =
a is that since angles ZQ» and ZR; are acute, the per-
pendicular to Q,R, through P, separates O, from R».
If Ay > Aj, then P; lies above the parallel to O»R;
through P»; if then it lies on or to the left of the vertical
line through P, we have ¢ > ¢, because the inequality
holds for both horizontal and vertical components (pos-
sibly with equality for one, but not both). Similarly, if
Py lies to the right of the vertical, then by > b,.

Second solution: (attribution unknown) Retain nota-
tion as in the first paragraph of the first solution. Since
the angle measures in any triangle add up to 7, some
angle of 77 must have measure less than or equal to its
counterpart in 7>. Without loss of generality assume

that ZP; < ZP,. Since the latter is acute (because T is
acute), we have sin ZP| < sin ZP,. By the Law of Sines,

1 1
Ar=5bicrsinZP < ShycasinZPy = Aa.

Remark: Many other solutions are possible; for in-
stance, one uses Heron’s formula for the area of a tri-
angle in terms of its side lengths.

Define a sequence v, by v, = (n—1)(n—3)---(4)(2) if
nisodd and v, = (n—1)(n—3)---(3)(1) if n is even;
it suffices to prove that u, = v, for all n > 2. Now
Vnt3vy = (n+2)(n)(n—1)! and vyovp = (n+ 1),
and S0 v, 13V, — V2V 1 = nl. Since we can check that
u, = v, for n =2,3,4, and u, and v, satisfy the same
recurrence, it follows by induction that u,, = v, for all
n > 2, as desired.

A—4 It suffices to verify that

X100 X

X1

e Xy = —

1
n= np! (el"'en)(elx1+"'+enxn)”.
n: GIE{*],I}

To check this, first note that the right side vanishes iden-
tically for x; = 0, because each term cancels the corre-
sponding term with e; flipped. Hence the right side, as
a polynomial, is divisible by x;; similarly it is divisi-
ble by x2,...,x,. Thus the right side is equal to xj - - - x,
times a scalar. (Another way to see this: the right side is
clearly odd as a polynomial in each individual variable,
but the only degree n monomial in xp,...,x, with that
property is xj ---x,.) Since each summand contributes
2‘—,,x1 -+ X, to the sum, the scalar factor is 1 and we are
done.

Remark: Several variants on the above construction are
possible; for instance,

p (_l)nfe,f...fe,,(elxl _|_“_+e”xn)n
" e;€{0,1}

by the same argument as above.

Remark: These construction work over any field of
characteristic greater than n (at least for n > 1). On
the other hand, no construction is possible over a field
of characteristic p < n, since the coefficient of x; - - - x;,
in the expansion of (ejx| + -+ 4 epx,)" is zero for any
e;.

Remark: Richard Stanley asks whether one can use
fewer than 2" terms, and what the smallest possible
number is.



A-5 First solution: First recall that any graph with n ver-

tices and e edges has at least n — e connected com-
ponents (add each edge one at a time, and note that
it reduces the number of components by at most 1).
Now imagine the squares of the checkerboard as a
graph, whose vertices are connected if the correspond-
ing squares share a side and are the same color. Let A
be the number of edges in the graph, and let B be the
number of 4-cycles (formed by monochromatic 2 x 2
squares). If we remove the bottom edge of each 4-cycle,
the resulting graph has the same number of connected
components as the original one; hence this number is at
least

mn—A-+B.

By the linearity of expectation, the expected number of
connected components is at least

mn—E(A)+E(B).

Moreover, we may compute E(A) by summing over
the individual pairs of adjacent squares, and we may
compute E(B) by summing over the individual 2 x 2
squares. Thus

E(4) = 5 (m(n— 1)+ (m— ),
E(B) = (m—1)(n—1),

and so the expected number of components is at least

mn—%(m(n—1)+(m—l)n)+%(m—l)(n—1)

mn+3m+3n+1 mn

Remark: A “dual” approach is to consider the graph
whose vertices are the corners of the squares of the
checkerboard, with two vertices joined if they are ad-
jacent and the edge between then does not separate two
squares of the same color. In this approach, the 4-cycles
become isolated vertices, and the bound on components
is replaced by a call to Euler’s formula relating the ver-
tices, edges and faces of a planar figure. (One must be
careful, however, to correctly handle faces which are
not simply connected.)

Second solution: (by Noam Elkies) Number the
squares of the checkerboard 1, ..., mn by numbering the
first row from left to right, then the second row, and so
on. We prove by induction on i that if we just consider
the figure formed by the first i squares, its expected
number of monochromatic components is at least i/8.
For i = 1, this is clear.

Suppose the i-th square does not abut the left edge or
the top row of the board. Then we may divide into three
cases.

— With probability 1/4, the i-th square is opposite in
color from the adjacent squares directly above and
to the left of it. In this case adding the i-th square
adds one component.

— With probability 1/8, the i-th square is the same
in color as the adjacent squares directly above and
to the left of it, but opposite in color from its diag-
onal neighbor above and to the left. In this case,
adding the i-th square either removes a component
or leaves the number unchanged.

— In all other cases, the number of components re-
mains unchanged upon adding the i-th square.

Hence adding the i-th square increases the expected
number of components by 1/4 —1/8 =1/8.

If the i-th square does abut the left edge of the board,
the situation is even simpler: if the i-th square differs in
color from the square above it, one component is added,
otherwise the number does not change. Hence adding
the i-th square increases the expected number of com-
ponents by 1/2; likewise if the i-th square abuts the top
edge of the board. Thus the expected number of com-
ponents is at least i/8 by induction, as desired.

Remark: Some solvers attempted to consider adding
one row at a time, rather than one square; this must be
handled with great care, as it is possible that the num-
ber of components can drop rather precipitously upon
adding an entire row.

A-6 By approximating each integral with a Riemann sum,

we may reduce to proving the discrete analogue: for
xj; €Rfori,j=1,...,n,
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The difference between the right side and the left side
is

n
Z (Xij + X — xit —ij)27
ijl=1

Bl

which is evidently nonnegative. If you prefer not to dis-
cretize, you may rewrite the original inequality as

1,1 p1 ,1
////F(x,y,z,w)zdxdydzdwzo
0o Jo Jo JO

for

F(x,y,z,w) =f(x,y) +f(sz) _f(wi) —f(z,y)~

Remark: (by Po-Ning Chen) The discrete inequality
can be arrived at more systematically by repeatedly ap-
plying the following identity: for any real ay,...,a,,

2
Z (x,'—xj)zznz;x,-z—<z]’x,-> .

1<i<j<n =



Remark: (by David Savitt) The discrete inequality can
also be interpreted as follows. For ¢,d € {1,...,n—1}
and &, = ¢2™/" put

i
Zed = Y 6 V).
irJ
Then the given inequality is equivalent to

n—1
Z ‘Zc,d|2 > 0.
c,d=1

B-1 Let k be an integer, 0 < k < n— 1. Since P(r)/rk =0,

we have

Y R TR,

= —(cr+cpir T4 Heor ™).

Write r = p/q where p and g are relatively prime. Then
the left hand side of the above equation can be written as
a fraction with denominator q"_k , while the right hand
side is a fraction with denominator p*. Since p and ¢
are relatively prime, both sides of the equation must be
an integer, and the result follows.

Remark: If we write » = a/b in lowest terms, then
P(x) factors as (bx — a)Q(x), where the polynomial Q
has integer coefficients because you can either do the
long division from the left and get denominators divis-
ible only by primes dividing b, or do it from the right
and get denominators divisible only by primes dividing
a. The numbers given in the problem are none other
than a times the coefficients of . More generally, if
P(x) is divisible, as a polynomial over the rationals, by
a polynomial R(x) with integer coefficients, then P/R
also has integer coefficients; this is known as “Gauss’s
lemma” and holds in any unique factorization domain.

B-2 First solution: We have

(m+n)in+n > (m+n>mmnn
m

because the binomial expansion of (n+n)™*" includes
the term on the right as well as some others. Rearrang-
ing this inequality yields the claim.

Remark: One can also interpret this argument combi-
natorially. Suppose that we choose m + n times (with
replacement) uniformly randomly from a set of m +n
balls, of which m are red and 7 are blue. Then the proba-
bility of picking each ball exactly once is (m+n)!/(m—+
n)™*". On the other hand, if p is the probability of pick-
ing exactly m red balls, then p < 1 and the probability
of picking each ball exactly once is p(m™/m!)(n" /n!).

Second solution: (by David Savitt) Define

Sp={i/k:i=1,... k}

and rewrite the desired inequality as

HxHy> H Z.

XESm  YESh 2ESm+n

To prove this, it suffices to check that if we sort the
multiplicands on both sides into increasing order, the i-
th term on the left side is greater than or equal to the i-th
term on the right side. (The equality is strict already for
i =1, so you do get a strict inequality above.)

Another way to say this is that for any i, the number of
factors on the left side which are less than i/(m+n) is
less than i. But since j/m < i/(m+n) is equivalent to
J <im/(m+n), that number is

im in
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Third solution: Put f(x) = x(log(x+ 1) —logx); then
forx > 0,

70 =log(1+1/%) ~ —
1

i _
f (X)— X(X—f-l)z.

Hence f”(x) < 0 for all x; since f'(x) — 0 as x — oo,
we have f’(x) > 0 for x > 0, so f is strictly increasing.

Put g(m) = mlogm — log(m!); then g(m+ 1) — g(m) =
f(m), so g(m+ 1) — g(m) increases with m. By induc-
tion, g(m+n) — g(m) increases with n for any positive
integer n, so in particular

g(m+n)—g(m) > g(n) —g(1) + f(m)
> g(n)

since g(1) = 0. Exponentiating yields the desired in-
equality.

Fourth solution: (by W.G. Boskoff and Bogdan
Suceavd) We prove the claim by induction on m + n.
The base case is m = n = 1, in which case the de-
sired inequality is obviously true: 2!/22 = 1/2 < 1 =
(1!/11(1!/1"). To prove the induction step, suppose
m+n > 2; we must then have m > 1 or n > 1 or both.
Because the desired result is symmetric in m and n, we
may as well assume n > 1. By the induction hypothesis,
we have

(m+n—1)! m! (n—1)!
(m+n—1)mtn=1 = g (p—1)n=1"

To obtain the desired inequality, it will suffice to check
that

(n— 1)"‘1 n!

(n=1)! (n)"

(m+n—1)""=1" (m+n)!
(m+n-1)!  (m+n)mtn




or in other words

1 m+n—1 1 n—1
1— 1—- .
() <(=3)

To show this, we check that the function f(x) = (1 —
1/x)*~ ! is strictly decreasing for x > 1; while this can
be achieved using the weighted arithmetic-geometric
mean inequality, we give a simple calculus proof in-
stead. The derivative of log f(x) is log(1 — 1/x) + 1/x,
so it is enough to check that this is negative for x > 1.
An equivalent statement is that log(1 —x) +x < 0 for
0 < x < 1; this in turn holds because the function g(x) =
log(1 —x) +x tends to 0 as x — 0™ and has derivative
1- & <0for0<x<1.

B-3 The answer is {a|a > 2}. If a > 2, then the func-
tion f(x) = 2a/(a —2) has the desired property; both
perimeter and area of R in this case are 2a”/(a — 2).
Now suppose that a < 2, and let f(x) be a nonnega-
tive continuous function on [0,a]. Let P = (xg,y0) be a
point on the graph of f(x) with maximal y-coordinate;
then the area of R is at most ayq since it lies below the
line y = yp. On the other hand, the points (0,0), (a,0),
and P divide the boundary of R into three sections. The
length of the section between (0,0) and P is at least the
distance between (0,0) and P, which is at least yo; the
length of the section between P and (a,0) is similarly
at least yo; and the length of the section between (0,0)
and (a,0) is a. Since a < 2, we have 2yy +a > ayp and
hence the perimeter of R is strictly greater than the area
of R.

B—4 First solution: Identify the xy-plane with the complex
plane C, so that P is the real number k. If z is sent to
7 by a counterclockwise rotation by 6 about P, then
7 —k = e'%(z—k); hence the rotation Ry sends z to {z+
k(1 —¢), where & = 2™/ 1t follows that R; followed
by Ry sends z to §(Sz+ (1—-¢))+2(1 &) =%z +
(1=8)(&+2), and so forth; an easy induction shows
that R sends z to

'+ (1=-0)(8" 420" 24+ (n—1){ +n).

Expanding the product (1 — {)({" 1 428" 2+ +

(n—1){ +n) yields =" — "' —...— { +n=n. Thus
R sends z to z+n; in cartesian coordinates, R(x,y) =
(x+n,y).

Second solution: (by Andy Lutomirski, via Ravi Vakil)
Imagine a regular n-gon of side length 1 placed with
its top edge on the x-axis and the left endpoint of that
edge at the origin. Then the rotations correspond to
rolling this n-gon along the x-axis; after the n rotations,
it clearly ends up in its original rotation and translated
n units to the right. Hence the whole plane must do so
as well.

Third solution: (attribution unknown) Viewing each
Ry as a function of a complex number z as in the first
solution, the function R, oR,_jo---oR|(z) is linear in

4

z with slope {" = 1. Tt thus equals z+ T for some T € C.
Since f1(1) =1, we can write | + 7 = R, 0---oR(1).
However, we also have

Ryo---oR(1)=Ry_10R1(0)+1
by the symmetry in how the R; are defined. Hence
R,(1+T)=R,oR1(0)+R,(1) =T +Ry(1);
that is, R,(T) = T. Hence T = n, as desired.

B-5 First solution: By taking logarithms, we
see that the desired limit is exp(L), where

L = limg - Yo ox" (In(14+x""") —In(1 +x7)).
Now

N

Z ¥ (In(1 +x" —In(1 +x"))

n=0

N N
=1/x Z:x”+1 In(1+x""1) — Zx”ln(l +x")
n=0 n=0

=N In(1+xN) 2+ (1/x—1) ix"ln(l—kx”);

n=1
since limy oo (XN In(1 + V1)) =0 for 0 < x < 1, we
conclude that L = —In2 + lim,_, - f(x), where

Fx)=(1/x—1) ix"ln(ler”)

n=1

— (l/x— 1) il il(_l)m—‘rlxn-‘rmn/m'

This final double sum converges absolutely when 0 <
x < 1, since

f:l ilx”m”/m: f:lx"(—ln(l —x"))
< ix"(ln(lx)),

which converges. (Note that —In(1 —x) and —In(1 —
x") are positive.) Hence we may interchange the sum-
mations in f(x) to obtain

(_1)m+1x(m+l)n

) = (1/x—1)

ngk
s

m=1n=1 m
& (=) (1 —x
:(ux_1)§%< J (1<ij).

This last sum converges absolutely uniformly in x, so
it is legitimate to take limits term by term. Since



xXMl—x

lim,_,- == = for fixed m, we have

[—xmt] m+1
oo 1 m+1
lim
xﬁl*f m; (m+1)

i m+1 17 1
i m m+1

oo m+l
(25
=221,

and hence L =1In2 — 1 and the desired limit is 2/e.

Remark: Note that the last series is not absolutely con-
vergent, so the recombination must be done without re-
arranging terms.

Second solution: (by Greg Price, via Tony Zhang and
Anders Kaseorg) Put #,(x) = In(1 +x"); we can then
write X" = exp(,(x)) — 1, and

oo

L= lim Y (ta(x) = tus1(x)) (1 — exp(ta(x))).

x—1- =0

The expression on the right is a Riemann sum approxi-
mating the integral [, 021 — ¢') dt, over the subdivision
of [0,In(2)) given by the #,(x). As x — 1, the max-
imum difference between consecutive #,(x) tends to 0,
so the Riemann sum tends to the value of the integral.
Hence L = [;"*(1—¢')dt =In2 — 1, as desired.

B-6 First solution: (based on a solution of Dan Bernstein)

Note that for any b, the condition that b ¢ % already
forces limsup N (x) /x to be at most 1/2: pair off 2mb+n
with (2m+1)b+nforn=1,...,b, and note that at most
one member of each pair may belong to .o7. The idea of
the proof is to do something similar with pairs replaced
by larger clumps, using long runs of excluded elements
of B.

Suppose we have positive integers bg = 1,by,...,b,
with the following properties:

(a) Fori=1,...,n,¢; =b;/(2b;_1) is an integer.
(b) Fore; € {—1,0,1}, |e1b1 +--- +enby| ¢ B.

Each nonnegative integer a has a unique “base expan-
sion”

=aopby+ -+ ay_1b,—1 +mb, (0 <a; <2¢);

if two integers have expansions with the same value
of m, and values of qg; differing by at most 1 for i =
0,...,n— 1, then their difference is not in 4, so at
most one of them lies in /. In particular, for any
d; €{0,...,¢;— 1}, any mg € {0,2¢o — 1} and any m,,
the set

{mobo + (2d1 + el)bo + -

+ (Zdnfl +en71)bn71 + (zmn + en)bn}a

where each ¢; runs over {0,1}, contains at most one
element of .«/; consequently, limsup N (x)/x < 1/2".

We now produce such b; recursively, starting with by =
1 (and both (a) and (b) holding vacuously). Given
by, ...,b, satisfying (a) and (b), note that by + --- +
b,—1 < b, by induction on n. By the hypotheses of the
problem, we can find a set S, of 6b, consecutive in-
tegers, none of which belongs to %. Let b,,| be the
second-smallest multiple of 2b, in S,; then b, +x €
Sy for —2b,, < x < 0 clearly, and also for 0 < x < 2b,
because there are most 4b, — 1 elements of S, preced-
ing by4+1. In particular, the analogue of (b) with n re-
placed by n+ 1 holds for e, | # 0; of course it holds for
en+1 = 0 because (b) was already known. Since the ana-
logue of (a) holds by construction, we have completed
this step of the construction and the recursion may con-
tinue.

Since we can construct by, .. .,b, satisfying (a) and (b)
for any n, we have limsupN(x)/x < 1/2" for any n,
yielding lim N (x)/x = 0 as desired.

Second solution: (by Paul Pollack) Let S be the set
of possible values of limsupN(x)/x; since S C [0, 1]
is bounded, it has a least upper bound L. Suppose by
way of contradiction that L > 0; we can then choose
o | # satisfying the conditions of the problem such that
limsupN(x)/x > 3L/4.

To begin with, we can certainly find some positive inte-
ger m ¢ A, so that 7 is disjoint from o/ +m = {a+m:
ac d}. Put /' =/ U (< +m) and let N'(x) be the
size of &' N{1,...,x}; then limsupN'(x)/x =3L/2 >
L, so &/ cannot obey the conditions of the problem
statement. That is, if we let %’ be the set of positive
integers that occur as differences between elements of
&', then there exists an integer n such that among any
n consecutive integers, at least one lies in %’. But

B C{b+em:be B,ec{—1,0,1}}

so among any n + 2m consecutive integers, at least one
lies in Z. This contradicts the condition of the problem
statement.

We conclude that it is impossible to have L > 0,so L =0
and lim N (x) /x = 0 as desired.

Remark: A hybrid between these two arguments is
to note that if we can produce ci,...,c, such that
lci—cj| ¢ #fori,j=1,...,n, then the translates o7 +
c1,...,9 +c, are disjoint and so limsup N (x) /x < 1/n.
Given c¢; < --- < ¢, as above, we can then choose ¢,
to be the largest element of a run of ¢, + 1 consecutive
integers, none of which lie in 4.



