The 66th William Lowell Putnam Mathematical Competition Saturday, December 3, 2005

- A1 Show that every positive integer is a sum of one or more numbers of the form $2^r 3^s$, where *r* and *s* are nonnegative integers and no summand divides another. (For example, 23 = 9 + 8 + 6.)
- A2 Let $\mathbf{S} = \{(a,b) | a = 1, 2, ..., n, b = 1, 2, 3\}$. A rook tour of **S** is a polygonal path made up of line segments connecting points $p_1, p_2, ..., p_{3n}$ in sequence such that
 - (i) $p_i \in \mathbf{S}$,
 - (ii) p_i and p_{i+1} are a unit distance apart, for $1 \le i < 3n$,
 - (iii) for each $p \in \mathbf{S}$ there is a unique *i* such that $p_i = p$. How many rook tours are there that begin at (1, 1) and end at (n, 1)?

(An example of such a rook tour for n = 5 was depicted in the original.)

- A3 Let p(z) be a polynomial of degree *n* all of whose zeros have absolute value 1 in the complex plane. Put $g(z) = p(z)/z^{n/2}$. Show that all zeros of g'(z) = 0 have absolute value 1.
- A4 Let *H* be an $n \times n$ matrix all of whose entries are ± 1 and whose rows are mutually orthogonal. Suppose *H* has an $a \times b$ submatrix whose entries are all 1. Show that $ab \le n$.
- A5 Evaluate $\int_0^1 \frac{\ln(x+1)}{x^2+1} dx$.
- A6 Let *n* be given, $n \ge 4$, and suppose that P_1, P_2, \ldots, P_n are *n* randomly, independently and uniformly, chosen points on a circle. Consider the convex *n*-gon whose vertices are the P_i . What is the probability that at least one of the vertex angles of this polygon is acute?
- B1 Find a nonzero polynomial P(x,y) such that $P(\lfloor a \rfloor, \lfloor 2a \rfloor) = 0$ for all real numbers *a*. (Note: $\lfloor v \rfloor$ is the greatest integer less than or equal to *v*.)

B2 Find all positive integers $n, k_1, ..., k_n$ such that $k_1 + \cdots + k_n = 5n - 4$ and

$$\frac{1}{k_1}+\cdots+\frac{1}{k_n}=1.$$

B3 Find all differentiable functions $f: (0,\infty) \to (0,\infty)$ for which there is a positive real number *a* such that

$$f'\left(\frac{a}{x}\right) = \frac{x}{f(x)}$$

for all x > 0.

- B4 For positive integers *m* and *n*, let f(m,n) denote the number of *n*-tuples $(x_1, x_2, ..., x_n)$ of integers such that $|x_1| + |x_2| + \dots + |x_n| \le m$. Show that f(m,n) = f(n,m).
- B5 Let $P(x_1,...,x_n)$ denote a polynomial with real coefficients in the variables $x_1,...,x_n$, and suppose that

$$\left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2}\right) P(x_1, \dots, x_n) = 0 \quad \text{(identically)}$$

and that

$$x_1^2 + \cdots + x_n^2$$
 divides $P(x_1, \ldots, x_n)$.

Show that P = 0 identically.

B6 Let S_n denote the set of all permutations of the numbers 1, 2, ..., n. For $\pi \in S_n$, let $\sigma(\pi) = 1$ if π is an even permutation and $\sigma(\pi) = -1$ if π is an odd permutation. Also, let $v(\pi)$ denote the number of fixed points of π . Show that

$$\sum_{\pi \in S_n} \frac{\sigma(\pi)}{\nu(\pi) + 1} = (-1)^{n+1} \frac{n}{n+1}.$$