The 66th William Lowell Putnam Mathematical Competition
 Saturday, December 3, 2005

A1 Show that every positive integer is a sum of one or more numbers of the form $2^{r} 3^{s}$, where r and s are nonnegative integers and no summand divides another. (For example, $23=9+8+6$.)

A2 Let $\mathbf{S}=\{(a, b) \mid a=1,2, \ldots, n, b=1,2,3\}$. A rook tour of \mathbf{S} is a polygonal path made up of line segments connecting points $p_{1}, p_{2}, \ldots, p_{3 n}$ in sequence such that
(i) $p_{i} \in \mathbf{S}$,
(ii) p_{i} and p_{i+1} are a unit distance apart, for $1 \leq i<$ $3 n$,
(iii) for each $p \in \mathbf{S}$ there is a unique i such that $p_{i}=p$. How many rook tours are there that begin at $(1,1)$ and end at $(n, 1)$?
(An example of such a rook tour for $n=5$ was depicted in the original.)

A3 Let $p(z)$ be a polynomial of degree n all of whose zeros have absolute value 1 in the complex plane. Put $g(z)=$ $p(z) / z^{n / 2}$. Show that all zeros of $g^{\prime}(z)=0$ have absolute value 1 .

A4 Let H be an $n \times n$ matrix all of whose entries are ± 1 and whose rows are mutually orthogonal. Suppose H has an $a \times b$ submatrix whose entries are all 1 . Show that $a b \leq n$.
A5 Evaluate $\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x$.
A6 Let n be given, $n \geq 4$, and suppose that $P_{1}, P_{2}, \ldots, P_{n}$ are n randomly, independently and uniformly, chosen points on a circle. Consider the convex n-gon whose vertices are the P_{i}. What is the probability that at least one of the vertex angles of this polygon is acute?
B1 Find a nonzero polynomial $P(x, y)$ such that $P(\lfloor a\rfloor,\lfloor 2 a\rfloor)=0$ for all real numbers a. (Note: $\lfloor v\rfloor$ is the greatest integer less than or equal to v.)

B2 Find all positive integers n, k_{1}, \ldots, k_{n} such that $k_{1}+\cdots+$ $k_{n}=5 n-4$ and

$$
\frac{1}{k_{1}}+\cdots+\frac{1}{k_{n}}=1
$$

B3 Find all differentiable functions $f:(0, \infty) \rightarrow(0, \infty)$ for which there is a positive real number a such that

$$
f^{\prime}\left(\frac{a}{x}\right)=\frac{x}{f(x)}
$$

for all $x>0$.
B4 For positive integers m and n, let $f(m, n)$ denote the number of n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of integers such that $\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right| \leq m$. Show that $f(m, n)=f(n, m)$.
B5 Let $P\left(x_{1}, \ldots, x_{n}\right)$ denote a polynomial with real coefficients in the variables x_{1}, \ldots, x_{n}, and suppose that

$$
\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}\right) P\left(x_{1}, \ldots, x_{n}\right)=0 \quad \text { (identically) }
$$

and that

$$
x_{1}^{2}+\cdots+x_{n}^{2} \text { divides } P\left(x_{1}, \ldots, x_{n}\right)
$$

Show that $P=0$ identically.
B6 Let S_{n} denote the set of all permutations of the numbers $1,2, \ldots, n$. For $\pi \in S_{n}$, let $\sigma(\pi)=1$ if π is an even permutation and $\sigma(\pi)=-1$ if π is an odd permutation. Also, let $v(\pi)$ denote the number of fixed points of π. Show that

$$
\sum_{\pi \in S_{n}} \frac{\sigma(\pi)}{v(\pi)+1}=(-1)^{n+1} \frac{n}{n+1}
$$

