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A–1 We proceed by induction, with base case 1= 2030. Sup-
pose all integers less than n− 1 can be represented. If
n is even, then we can take a representation of n/2 and
multiply each term by 2 to obtain a representation of n.
If n is odd, put m = blog3 nc, so that 3m ≤ n < 3m+1. If
3m = n, we are done. Otherwise, choose a representa-
tion (n−3m)/2= s1+ · · ·+sk in the desired form. Then

n = 3m +2s1 + · · ·+2sk,

and clearly none of the 2si divide each other or 3m.
Moreover, since 2si ≤ n− 3m < 3m+1 − 3m, we have
si < 3m, so 3m cannot divide 2si either. Thus n has a
representation of the desired form in all cases, complet-
ing the induction.

Remarks: This problem is originally due to Paul Erdős.
Note that the representations need not be unique: for
instance,

11 = 2+9 = 3+8.

A–2 We will assume n ≥ 2 hereafter, since the answer is 0
for n = 1.

First solution: We show that the set of rook tours from
(1,1) to (n,1) is in bijection with the set of subsets of
{1,2, ...,n} that include n and contain an even number
of elements in total. Since the latter set evidently con-
tains 2n−2 elements, so does the former.

We now construct the bijection. Given a rook tour P
from (1,1) to (n,1), let S = S(P) denote the set of
all i ∈ {1,2, . . . ,n} for which there is either a directed
edge from (i,1) to (i,2) or from (i,3) to (i,2). It is
clear that this set S includes n and must contain an
even number of elements. Conversely, given a subset
S= {a1,a2, . . . ,a2r = n}⊂{1,2, . . . ,n} of this type with
a1 < a2 < · · ·< a2r, we notice that there is a unique path
P containing (ai,2+(−1)i),(a1,2) for i = 1,2, . . . ,2r.
This establishes the desired bijection.

Second solution: Let An denote the set of rook tours
beginning at (1,1) and ending at (n,1), and let Bn de-
note the set of rook tours beginning at (1,1) and ending
at (n,3).

For n ≥ 2, we construct a bijection between An and
An−1 ∪Bn−1. Any path P in An contains either the line
segment P1 between (n−1,1) and (n,1), or the line seg-
ment P2 between (n,2) and (n,1). In the former case, P
must also contain the subpath P′1 which joins (n−1,3),
(n,3), (n,2), and (n−1,2) consecutively; then deleting
P1 and P′1 from P and adding the line segment joining
(n− 1,3) to (n− 1,2) results in a path in An−1. (This

construction is reversible, lengthening any path in An−1
to a path in An.) In the latter case, P contains the sub-
path P′2 which joins (n− 1,3), (n,3), (n,2), (n,1) con-
secutively; deleting P′2 results in a path in Bn−1, and
this construction is also reversible. The desired bijec-
tion follows.

Similarly, there is a bijection between Bn and An−1 ∪
Bn−1 for n ≥ 2. It follows by induction that for n ≥ 2,
|An|= |Bn|= 2n−2(|A1|+ |B1|). But |A1|= 0 and |B1|=
1, and hence the desired answer is |An|= 2n−2.

Remarks: Other bijective arguments are possible: for
instance, Noam Elkies points out that each element
of An ∪ Bn contains a different one of the possible
sets of segments of the form (i,2),(i + 1,2) for i =
1, . . . ,n− 1. Richard Stanley provides the reference:
K.L. Collins and L.B. Krompart, The number of Hamil-
tonian paths in a rectangular grid, Discrete Math. 169
(1997), 29–38. This problem is Theorem 1 of that
paper; the cases of 4× n and 5× n grids are also
treated. The paper can also be found online at the URL
kcollins.web.wesleyan.edu/vita.htm.

A–3 Note that it is implicit in the problem that p is noncon-
stant, one may take any branch of the square root, and
that z = 0 should be ignored.

First solution: Write p(z) = c∏
n
j=1(z− r j), so that

g′(z)
g(z)

=
1
2z

n

∑
j=1

z+ r j

z− r j
.

Now if z 6= r j for all j,then

z+ r j

z− r j
=

(z+ r j)(z− r j)

|z− r j|2
=
|z|2−1+2Im(zr j)

|z− r j|2
,

and so

Re
zg′(z)
g(z)

=
|z|2−1

2

(
∑

j

1
|z− r j|2

)
.

Since the quantity in parentheses is positive, g′(z)/g(z)
can be 0 only if |z| = 1. If on the other hand z = r j for
some j, then |z|= 1 anyway.

Second solution: Write p(z) = c∏
n
j=1(z− r j), so that

g′(z)
g(z)

=
n

∑
j=1

(
1

z− r j
− 1

2z

)
.

We first check that g′(z) 6= 0 whenever z is real and z >
1. In this case, for r j = eiθ j , we have z− r j = (z−



2

cos(θ j))+ sin(θ j)i, so the real part of 1
z−r j
− 1

2z is

z− cos(θ j)

z2−2zcos(θ j)+1
− 1

2z
=

z2−1
2z(z2−2zcos(θ j)+1)

> 0.

Hence g′(z)/g(z) has positive real part, so g′(z)/g(z)
and hence g(z) are nonzero.

Applying the same argument after replacing p(z) by
p(eiθ z), we deduce that g′ cannot have any roots out-
side the unit circle. Applying the same argument after
replacing p(z) by zn p(1/z), we also deduce that g′ can-
not have any roots inside the unit circle. Hence all roots
of g′ have absolute value 1, as desired.

Third solution: Write p(z) = c∏
n
j=1(z− r j) and put

r j = e2iθ j . Note that g(e2iθ ) is equal to a nonzero con-
stant times

h(θ) =
n

∏
j=1

ei(θ+θ j)− e−i(θ+θ j)

2i
=

n

∏
j=1

sin(θ +θ j).

Since h has at least 2n roots (counting multiplicity) in
the interval [0,2π), h′ does also by repeated application
of Rolle’s theorem. Since g′(e2iθ ) = 2ie2iθ h′(θ), g′(z2)
has at least 2n roots on the unit circle. Since g′(z2) is
equal to z−n−1 times a polynomial of degree 2n, g′(z2)
has all roots on the unit circle, as then does g′(z).

Remarks: The second solution imitates the proof of
the Gauss-Lucas theorem: the roots of the derivative of
a complex polynomial lie in the convex hull of the roots
of the original polynomial. The second solution is close
to problem B3 from the 2000 Putnam. A hybrid be-
tween the first and third solutions is to check that on the
unit circle, Re(zg′(z)/g(z)) = 0 while between any two
roots of p, Im(zg′(z)/g(z)) runs from +∞ to−∞ and so
must have a zero crossing. (This only works when p has
distinct roots, but the general case follows by the con-
tinuity of the roots of a polynomial as functions of the
coefficients.) One can also construct a solution using
Rouché’s theorem.

A–4 First solution: Choose a set of a rows r1, . . . ,ra con-
taining an a×b submatrix whose entries are all 1. Then
for i, j ∈ {1, . . . ,a}, we have ri · r j = n if i = j and 0
otherwise. Hence

a

∑
i, j=1

ri · r j = an.

On the other hand, the term on the left is the dot product
of r1 + · · ·+ ra with itself, i.e., its squared length. Since
this vector has a in each of its first b coordinates, the dot
product is at least a2b. Hence an≥ a2b, whence n≥ ab
as desired.

Second solution: (by Richard Stanley) Suppose with-
out loss of generality that the a×b submatrix occupies
the first a rows and the first b columns. Let M be the
submatrix occupying the first a rows and the last n− b

columns. Then the hypothesis implies that the matrix
MMT has n− b’s on the main diagonal and −b’s else-
where. Hence the column vector v of length a consist-
ing of all 1’s satisfies MMT v = (n− ab)v, so n− ab is
an eigenvalue of MMT . But MMT is semidefinite, so
its eigenvalues are all nonnegative real numbers. Hence
n−ab≥ 0.

Remarks: A matrix as in the problem is called
a Hadamard matrix, because it meets the equality
condition of Hadamard’s inequality: any n× n matrix
with ±1 entries has absolute determinant at most nn/2,
with equality if and only if the rows are mutually
orthogonal (from the interpretation of the determinant
as the volume of a paralellepiped whose edges are
parallel to the row vectors). Note that this implies
that the columns are also mutually orthogonal. A
generalization of this problem, with a similar proof,
is known as Lindsey’s lemma: the sum of the entries
in any a× b submatrix of a Hadamard matrix is at
most

√
abn. Stanley notes that Ryser (1981) asked

for the smallest size of a Hadamard matrix contain-
ing an r × s submatrix of all 1’s, and refers to the
URL www3.interscience.wiley.com/cgi-bin/
abstract/110550861/ABSTRACT for more informa-
tion.

A–5 First solution: We make the substitution x = tanθ ,
rewriting the desired integral as∫

π/4

0
log(tan(θ)+1)dθ .

Write

log(tan(θ)+1) = log(sin(θ)+ cos(θ))− log(cos(θ))

and then note that sin(θ)+ cos(θ) =
√

2cos(π/4−θ).
We may thus rewrite the integrand as

1
2

log(2)+ log(cos(π/4−θ))− log(cos(θ)).

But over the interval [0,π/4], the integrals of
log(cos(θ)) and log(cos(π/4− θ)) are equal, so their
contributions cancel out. The desired integral is then
just the integral of 1

2 log(2) over the interval [0,π/4],
which is π log(2)/8.

Second solution: (by Roger Nelsen) Let I denote the
desired integral. We make the substitution x = (1−
u)/(1+u) to obtain

I =
∫ 1

0

(1+u)2 log(2/(1+u))
2(1+u2)

2du
(1+u)2

=
∫ 1

0

log(2)− log(1+u)
1+u2 du

= log(2)
∫ 1

0

du
1+u2 − I,
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yielding

I =
1
2

log(2)
∫ 1

0

du
1+u2 =

π log(2)
8

.

Third solution: (attributed to Steven Sivek) Define the
function

f (t) =
∫ 1

0

log(xt +1)
x2 +1

dx

so that f (0) = 0 and the desired integral is f (1). Then
by differentiation under the integral,

f ′(t) =
∫ 1

0

x
(xt +1)(x2 +1)

dx.

By partial fractions, we obtain

f ′(t) =
2t arctan(x)−2log(tx+1)+ log(x2 +1)

2(t2 +1)

∣∣∣∣x=1

x=0

=
πt +2log(2)−4log(t +1)

4(t2 +1)
,

whence

f (t) =
log(2)arctan(t)

2
+

π log(t2 +1)
8

−
∫ t

0

log(t +1)
t2 +1

dt

and hence

f (1) =
π log(2)

4
−
∫ 1

0

log(t +1)
t2 +1

dt.

But the integral on the right is again the desired integral
f (1), so we may move it to the left to obtain

2 f (1) =
π log(2)

4

and hence f (1) = π log(2)/8 as desired.

Fourth solution: (by David Rusin) We have

∫ 1

0

log(x+1)
x2 +1

dx =
∫ 1

0

(
∞

∑
n=1

(−1)n−1xn

n(x2 +1)

)
dx.

We next justify moving the sum through the integral
sign. Note that

∞

∑
n=1

∫ 1

0

(−1)n−1xn dx
n(x2 +1)

is an alternating series whose terms strictly decrease to
zero, so it converges. Moreover, its partial sums alter-
nately bound the previous integral above and below, so
the sum of the series coincides with the integral.

Put

Jn =
∫ 1

0

xn dx
x2 +1

;

then J0 = arctan(1) = π

4 and J1 =
1
2 log(2). Moreover,

Jn + Jn+2 =
∫ 1

0
xn dx =

1
n+1

.

Write

Am =
m

∑
i=1

(−1)i−1

2i−1

Bm =
m

∑
i=1

(−1)i−1

2i
;

then

J2n = (−1)n(J0−An)

J2n+1 = (−1)n(J1−Bn).

Now the 2N-th partial sum of our series equals

N

∑
n=1

[
J2n−1

2n−1
− J2n

2n

]
=

N

∑
n=1

(−1)n−1

2n−1

[
(J1−Bn−1)−

(−1)n

2n
(J0−An)

]
= AN(J1−BN−1)+BN(J0−AN)+ANBN .

As N→ ∞, AN → J0 and BN → J1, so the sum tends to
J0J1 = π log(2)/8.

Fifth solution: (suggested by Alin Bostan) Note that

log(1+ x) =
∫ 1

0

xdy
1+ xy

,

so the desired integral I may be written as

I =
∫ 1

0

∫ 1

0

xdydx
(1+ xy)(1+ x2)

.

We may interchange x and y in this expression, then use
Fubini’s theorem to interchange the order of summa-
tion, to obtain

I =
∫ 1

0

∫ 1

0

ydydx
(1+ xy)(1+ y2)

.

We then add these expressions to obtain

2I =
∫ 1

0

∫ 1

0

(
x

1+ x2 +
y

1+ y2

)
dydx
1+ xy

=
∫ 1

0

∫ 1

0

x+ y+ xy2 + x2y
(1+ x2)(1+ y2)

dydx
1+ xy

=
∫ 1

0

∫ 1

0

(x+ y)dydx
(1+ x2)(1+ y2)

.

By another symmetry argument, we have

2I = 2
∫ 1

0

∫ 1

0

xdydx
(1+ x2)(1+ y2)

,
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so

I =
(∫ 1

0

xdx
1+ x2

)(∫ 1

0

1
1+ y2

)
= log(2) · π

8
.

Remarks: The first two solutions are related by the
fact that if x = tan(θ), then 1− x/(1+ x) = tan(π/4−
θ). The strategy of the third solution (introducing
a parameter then differentiating it) was a favorite of
physics Nobelist (and Putnam Fellow) Richard Feyn-
man. The fifth solution resembles Gauss’s evaluation
of
∫

∞

−∞
exp(−x2)dx. Noam Elkies notes that this inte-

gral is number 2.491#8 in Gradshteyn and Ryzhik, Ta-
ble of integrals, series, and products. The Mathemat-
ica computer algebra system (version 5.2) successfully
computes this integral, but we do not know how.

A–6 First solution: The angle at a vertex P is acute if and
only if all of the other points lie on an open semicir-
cle. We first deduce from this that if there are any
two acute angles at all, they must occur consecutively.
Suppose the contrary; label the vertices Q1, . . . ,Qn in
counterclockwise order (starting anywhere), and sup-
pose that the angles at Q1 and Qi are acute for some
i with 3 ≤ i ≤ n− 1. Then the open semicircle start-
ing at Q2 and proceeding counterclockwise must con-
tain all of Q3, . . . ,Qn, while the open semicircle start-
ing at Qi and proceeding counterclockwise must contain
Qi+1, . . . ,Qn,Q1, . . . ,Qi−1. Thus two open semicircles
cover the entire circle, contradiction.

It follows that if the polygon has at least one acute an-
gle, then it has either one acute angle or two acute an-
gles occurring consecutively. In particular, there is a
unique pair of consecutive vertices Q1,Q2 in counter-
clockwise order for which ∠Q2 is acute and ∠Q1 is
not acute. Then the remaining points all lie in the arc
from the antipode of Q1 to Q1, but Q2 cannot lie in the
arc, and the remaining points cannot all lie in the arc
from the antipode of Q1 to the antipode of Q2. Given
the choice of Q1,Q2, let x be the measure of the coun-
terclockwise arc from Q1 to Q2; then the probability
that the other points fall into position is 2−n+2−xn−2 if
x≤ 1/2 and 0 otherwise.

Hence the probability that the polygon has at least one
acute angle with a given choice of which two points will
act as Q1 and Q2 is∫ 1/2

0
(2−n+2− xn−2)dx =

n−2
n−1

2−n+1.

Since there are n(n− 1) choices for which two points
act as Q1 and Q2, the probability of at least one acute
angle is n(n−2)2−n+1.

Second solution: (by Calvin Lin) As in the first solu-
tion, we may compute the probability that for a particu-
lar one of the points Q1, the angle at Q1 is not acute but
the following angle is, and then multiply by n. Imag-
ine picking the points by first choosing Q1, then pick-
ing n−1 pairs of antipodal points and then picking one

member of each pair. Let R2, . . . ,Rn be the points of the
pairs which lie in the semicircle, taken in order away
from Q1, and let S2, . . . ,Sn be the antipodes of these.
Then to get the desired situation, we must choose from
the pairs to end up with all but one of the Si, and we can-
not take Rn and the other Si or else ∠Q1 will be acute.
That gives us (n− 2) good choices out of 2n−1; since
we could have chosen Q1 to be any of the n points, the
probability is again n(n−2)2−n+1.

B–1 Take P(x,y) = (y− 2x)(y− 2x− 1). To see that this
works, first note that if m = bac, then 2m is an integer
less than or equal to 2a, so 2m ≤ b2ac. On the other
hand, m+1 is an integer strictly greater than a, so 2m+
2 is an integer strictly greater than 2a, so b2ac≤ 2m+1.

B–2 By the arithmetic-harmonic mean inequality or the
Cauchy-Schwarz inequality,

(k1 + · · ·+ kn)

(
1
k1

+ · · ·+ 1
kn

)
≥ n2.

We must thus have 5n−4≥ n2, so n≤ 4. Without loss
of generality, we may suppose that k1 ≤ ·· · ≤ kn.

If n = 1, we must have k1 = 1, which works. Note that
hereafter we cannot have k1 = 1.

If n = 2, we have (k1,k2) ∈ {(2,4),(3,3)}, neither of
which work.

If n = 3, we have k1 + k2 + k3 = 11, so 2 ≤ k1 ≤ 3.
Hence

(k1,k2,k3) ∈ {(2,2,7),(2,3,6),(2,4,5),(3,3,5),(3,4,4)},

and only (2,3,6) works.

If n = 4, we must have equality in the AM-HM inequal-
ity, which only happens when k1 = k2 = k3 = k4 = 4.

Hence the solutions are n = 1 and k1 = 1, n = 3 and
(k1,k2,k3) is a permutation of (2,3,6), and n = 4 and
(k1,k2,k3,k4) = (4,4,4,4).

Remark: In the cases n = 2,3, Greg Kuperberg sug-
gests the alternate approach of enumerating the solu-
tions of 1/k1+ · · ·+1/kn = 1 with k1 ≤ ·· · ≤ kn. This is
easily done by proceeding in lexicographic order: one
obtains (2,2) for n = 2, and (2,3,6),(2,4,4),(3,3,3)
for n = 3, and only (2,3,6) contributes to the final an-
swer.

B–3 First solution: The functions are precisely f (x) = cxd

for c,d > 0 arbitrary except that we must take c = 1 in
case d = 1. To see that these work, note that f ′(a/x) =
dc(a/x)d−1 and x/ f (x) = 1/(cxd−1), so the given equa-
tion holds if and only if dc2ad−1 = 1. If d 6= 1, we may
solve for a no matter what c is; if d = 1, we must have
c = 1. (Thanks to Brad Rodgers for pointing out the
d = 1 restriction.)

To check that these are all solutions, put b = log(a) and
y = log(a/x); rewrite the given equation as

f (eb−y) f ′(ey) = eb−y.
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Put

g(y) = log f (ey);

then the given equation rewrites as

g(b− y)+ logg′(y)+g(y)− y = b− y,

or

logg′(y) = b−g(y)−g(b− y).

By the symmetry of the right side, we have g′(b− y) =
g′(y). Hence the function g(y) + g(b− y) has zero
derivative and so is constant, as then is g′(y). From this
we deduce that f (x) = cxd for some c,d, both necessar-
ily positive since f ′(x)> 0 for all x.

Second solution: (suggested by several people) Substi-
tute a/x for x in the given equation:

f ′(x) =
a

x f (a/x)
.

Differentiate:

f ′′(x) =− a
x2 f (a/x)

+
a2 f ′(a/x)
x3 f (a/x)2 .

Now substitute to eliminate evaluations at a/x:

f ′′(x) =− f ′(x)
x

+
f ′(x)2

f (x)
.

Clear denominators:

x f (x) f ′′(x)+ f (x) f ′(x) = x f ′(x)2.

Divide through by f (x)2 and rearrange:

0 =
f ′(x)
f (x)

+
x f ′′(x)

f (x)
− x f ′(x)2

f (x)2 .

The right side is the derivative of x f ′(x)/ f (x), so that
quantity is constant. That is, for some d,

f ′(x)
f (x)

=
d
x
.

Integrating yields f (x) = cxd , as desired.

B–4 First solution: Define f (m,n,k) as the number of n-
tuples (x1,x2, . . . ,xn) of integers such that |x1|+ · · ·+
|xn| ≤ m and exactly k of x1, . . . ,xn are nonzero. To
choose such a tuple, we may choose the k nonzero posi-
tions, the signs of those k numbers, and then an ordered
k-tuple of positive integers with sum ≤ m. There are(n

k

)
options for the first choice, and 2k for the second.

As for the third, we have
(m

k

)
options by a “stars and

bars” argument: depict the k-tuple by drawing a num-
ber of stars for each term, separated by bars, and adding
stars at the end to get a total of m stars. Then each tuple

corresponds to placing k bars, each in a different posi-
tion behind one of the m fixed stars.

We conclude that

f (m,n,k) = 2k
(

m
k

)(
n
k

)
= f (n,m,k);

summing over k gives f (m,n)= f (n,m). (One may also
extract easily a bijective interpretation of the equality.)

Second solution: (by Greg Kuperberg) It will be con-
venient to extend the definition of f (m,n) to m,n ≥ 0,
in which case we have f (0,m) = f (n,0) = 1.

Let Sm,n be the set of n-tuples (x1, . . . ,xn) of inte-
gers such that |x1|+ · · ·+ |xn| ≤ m. Then elements of
Sm,n can be classified into three types. Tuples with
|x1|+ · · ·+ |xn|< m also belong to Sm−1,n. Tuples with
|x1|+ · · ·+ |xn|= m and xn ≥ 0 correspond to elements
of Sm,n−1 by dropping xn. Tuples with |x1|+ · · ·+ |xn|=
m and xn < 0 correspond to elements of Sm−1,n−1 by
dropping xn. It follows that

f (m,n) = f (m−1,n)+ f (m,n−1)+ f (m−1,n−1),

so f satisfies a symmetric recurrence with symmetric
boundary conditions f (0,m) = f (n,0) = 1. Hence f is
symmetric.

Third solution: (by Greg Martin) As in the second so-
lution, it is convenient to allow f (m,0) = f (0,n) = 1.
Define the generating function

G(x,y) =
∞

∑
m=0

∞

∑
n=0

f (m,n)xmyn.

As equalities of formal power series (or convergent se-
ries on, say, the region |x|, |y|< 1

3 ), we have

G(x,y) = ∑
m≥0

∑
n≥0

xmyn
∑

k1, ...,kn∈Z
|k1|+···+|kn|≤m

1

= ∑
n≥0

yn
∑

k1, ...,kn∈Z
∑

m≥|k1|+···+|kn|
xm

= ∑
n≥0

yn
∑

k1, ...,kn∈Z

x|k1|+···+|kn|

1− x

=
1

1− x ∑
n≥0

yn
(

∑
k∈Z

x|k|
)n

=
1

1− x ∑
n≥0

yn
(

1+ x
1− x

)n

=
1

1− x
· 1

1− y(1+ x)/(1− x)

=
1

1− x− y− xy
.

Since G(x,y) = G(y,x), it follows that f (m,n) =
f (n,m) for all m,n≥ 0.



6

B–5 First solution: Put Q = x2
1 + · · ·+ x2

n. Since Q is ho-
mogeneous, P is divisible by Q if and only if each of
the homogeneous components of P is divisible by Q. It
is thus sufficient to solve the problem in case P itself is
homogeneous, say of degree d.

Suppose that we have a factorization P = QmR for some
m > 0, where R is homogeneous of degree d and not
divisible by Q; note that the homogeneity implies that

n

∑
i=1

xi
∂R
∂xi

= dR.

Write ∇2 as shorthand for ∂ 2

∂x2
1
+ · · ·+ ∂ 2

∂x2
n
; then

0 = ∇
2P

= 2mnQm−1R+Qm
∇

2R+2
n

∑
i=1

2mxiQm−1 ∂R
∂xi

= Qm
∇

2R+(2mn+4md)Qm−1R.

Since m > 0, this forces R to be divisible by Q, contra-
diction.

Second solution: (by Noam Elkies) Retain notation as
in the first solution. Let Pd be the set of homogeneous
polynomials of degree d, and let Hd be the subset of
Pd of polynomials killed by ∇2, which has dimension
≥ dim(Pd)−dim(Pd−2); the given problem amounts to
showing that this inequality is actually an equality.

Consider the operator Q∇2 (i.e., apply ∇2 then multiply
by Q) on Pd ; its zero eigenspace is precisely Hd . By the
calculation from the first solution, if R ∈ Pd , then

∇
2(QR)−Q∇

2R = (2n+4d)R.

Consequently, Q jHd−2 j is contained in the eigenspace
of Q∇2 on Pd of eigenvalue

(2n+4(d−2 j))+ · · ·+(2n+4(d−2)).

In particular, the Q jHd−2 j lie in distinct eigenspaces,
so are linearly independent within Pd . But by dimen-
sion counting, their total dimension is at least that of Pd .
Hence they exhaust Pd , and the zero eigenspace cannot
have dimension greater than dim(Pd)− dim(Pd−2), as
desired.

Third solution: (by Richard Stanley) Write x =

(x1, . . . ,xn) and ∇ = ( ∂

∂x1
, . . . , ∂

∂xn
). Suppose that

P(x) = Q(x)(x2
1 + · · ·+ x2

n). Then

P(∇)P(x) = Q(∇)(∇2)P(x) = 0.

On the other hand, if P(x) = ∑α cα xα (where α =
(α1, . . . ,αn) and xα = xα1

1 · · ·xαn
n ), then the constant

term of P(∇)P(x) is seen to be ∑α c2
α . Hence cα = 0

for all α .

Remarks: The first two solutions apply directly over
any field of characteristic zero. (The result fails

in characteristic p > 0 because we may take P =

(x2
1 + · · ·+ x2

n)
p = x2p

1 + · · ·+ x2p
n .) The third solution

can be extended to complex coefficients by replacing
P(∇) by its complex conjugate, and again the result
may be deduced for any field of characteristic zero.
Stanley also suggests Section 5 of the arXiv e-print
math.CO/0502363 for some algebraic background for
this problem.

B–6 First solution: Let I be the identity matrix, and let Jx be
the matrix with x’s on the diagonal and 1’s elsewhere.
Note that Jx−(x−1)I, being the all 1’s matrix, has rank
1 and trace n, so has n− 1 eigenvalues equal to 0 and
one equal to n. Hence Jx has n−1 eigenvalues equal to
x−1 and one equal to x+n−1, implying

detJx = (x+n−1)(x−1)n−1.

On the other hand, we may expand the determinant as a
sum indexed by permutations, in which case we get

detJx = ∑
π∈Sn

sgn(π)xν(π).

Integrating both sides from 0 to 1 (and substituting y =
1− x) yields

∑
π∈Sn

sgn(π)
ν(π)+1

=
∫ 1

0
(x+n−1)(x−1)n−1 dx

=
∫ 1

0
(−1)n+1(n− y)yn−1 dy

= (−1)n+1 n
n+1

,

as desired.

Second solution: We start by recalling a form of the
principle of inclusion-exclusion: if f is a function on
the power set of {1, . . . ,n}, then

f (S) = ∑
T⊇S

(−1)|T |−|S| ∑
U⊇T

f (U).

In this case we take f (S) to be the sum of σ(π) over all
permutations π whose fixed points are exactly S. Then
∑U⊇T f (U) = 1 if |T | ≥ n−1 and 0 otherwise (since a
permutation group on 2 or more symbols has as many
even and odd permutations), so

f (S) = (−1)n−|S|(1−n+ |S|).

The desired sum can thus be written, by grouping over
fixed point sets, as

n

∑
i=0

(
n
i

)
(−1)n−i 1−n+ i

i+1

=
n

∑
i=0

(−1)n−i
(

n
i

)
−

n

∑
i=0

(−1)n−i n
i+1

(
n
i

)
= 0−

n

∑
i=0

(−1)n−i n
n+1

(
n+1
i+1

)
= (−1)n+1 n

n+1
.
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Third solution: (by Richard Stanley) The cycle indica-
tor of the symmetric group Sn is defined by

Zn(x1, . . . ,xn) = ∑
π∈Sn

xc1(π)
1 · · ·xcn(π)

n ,

where ci(π) is the number of cycles of π of length i. Put

Fn = ∑
π∈Sn

σ(π)xν(π) = Zn(x,−1,1,−1,1, . . .)

and

f (n) = ∑
π∈Sn

σ(π)

ν(π)+1
=
∫ 1

0
Fn(x)dx.

A standard argument in enumerative combinatorics (the
Exponential Formula) gives

∞

∑
n=0

Zn(x1, . . . ,xn)
tn

n!
= exp

∞

∑
k=1

xk
tk

k
,

yielding

∞

∑
n=0

f (n)
tn

n!
=
∫ 1

0
exp
(

xt− t2

2
+

t3

3
−·· ·

)
dx

=
∫ 1

0
e(x−1)t+log(1+t) dx

=
∫ 1

0
(1+ t)e(x−1)t dx

=
1
t
(1− e−t)(1+ t).

Expanding the right side as a Taylor series and compar-
ing coefficients yields the desired result.

Fourth solution (sketch): (by David Savitt) We prove
the identity of rational functions

∑
π∈Sn

σ(π)

ν(π)+ x
=

(−1)n+1n!(x+n−1)
x(x+1) · · ·(x+n)

by induction on n, which for x = 1 implies the desired
result. (This can also be deduced as in the other solu-
tions, but in this argument it is necessary to formulate
the strong induction hypothesis.)

Let R(n,x) be the right hand side of the above equation.
It is easy to verify that

R(x,n) = R(x+1,n−1)+(n−1)!
(−1)n+1

x

+
n−1

∑
l=2

(−1)l−1 (n−1)!
(n− l)!

R(x,n− l),

since the sum telescopes. To prove the desired equality,
it suffices to show that the left hand side satisfies the
same recurrence. This follows because we can classify
each π ∈ Sn as either fixing n, being an n-cycle, or hav-
ing n in an l-cycle for one of l = 2, . . . ,n− 1; writing
the sum over these classes gives the desired recurrence.


