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A–1 The only such α are 2/3,3/2,(13±
√

601)/12.

First solution: Let C1 and C2 be the curves y = αx2 +
αx+ 1

24 and x = αy2 +αy+ 1
24 , respectively, and let L

be the line y = x. We consider three cases.

If C1 is tangent to L, then the point of tangency (x,x)
satisfies

2αx+α = 1, x = αx2 +αx+
1

24
;

by symmetry, C2 is tangent to L there, so C1 and C2 are
tangent. Writing α = 1/(2x+ 1) in the first equation
and substituting into the second, we must have

x =
x2 + x
2x+1

+
1

24
,

which simplifies to 0 = 24x2− 2x− 1 = (6x+ 1)(4x−
1), or x ∈ {1/4,−1/6}. This yields α = 1/(2x+ 1) ∈
{2/3,3/2}.
If C1 does not intersect L, then C1 and C2 are separated
by L and so cannot be tangent.

If C1 intersects L in two distinct points P1,P2, then it
is not tangent to L at either point. Suppose at one of
these points, say P1, the tangent to C1 is perpendicular
to L; then by symmetry, the same will be true of C2, so
C1 and C2 will be tangent at P1. In this case, the point
P1 = (x,x) satisfies

2αx+α =−1, x = αx2 +αx+
1

24
;

writing α = −1/(2x+ 1) in the first equation and sub-
stituting into the second, we have

x =− x2 + x
2x+1

+
1

24
,

or x = (−23±
√

601)/72. This yields α = −1/(2x+
1) = (13±

√
601)/12.

If instead the tangents to C1 at P1,P2 are not perpen-
dicular to L, then we claim there cannot be any point
where C1 and C2 are tangent. Indeed, if we count in-
tersections of C1 and C2 (by using C1 to substitute for y
in C2, then solving for y), we get at most four solutions
counting multiplicity. Two of these are P1 and P2, and
any point of tangency counts for two more. However,
off of L, any point of tangency would have a mirror im-
age which is also a point of tangency, and there cannot
be six solutions. Hence we have now found all possible
α .

Second solution: For any nonzero value of α , the two
conics will intersect in four points in the complex pro-
jective plane P2(C). To determine the y-coordinates of
these intersection points, subtract the two equations to
obtain

(y− x) = α(x− y)(x+ y)+α(x− y).

Therefore, at a point of intersection we have either x =
y, or x = −1/α − (y+ 1). Substituting these two pos-
sible linear conditions into the second equation shows
that the y-coordinate of a point of intersection is a root
of either Q1(y) = αy2 + (α − 1)y + 1/24 or Q2(y) =
αy2 +(α +1)y+25/24+1/α .

If two curves are tangent, then the y-coordinates of at
least two of the intersection points will coincide; the
converse is also true because one of the curves is the
graph of a function in x. The coincidence occurs pre-
cisely when either the discriminant of at least one of
Q1 or Q2 is zero, or there is a common root of Q1
and Q2. Computing the discriminants of Q1 and Q2
yields (up to constant factors) f1(α) = 6α2− 13α + 6
and f2(α) = 6α2 − 13α − 18, respectively. If on the
other hand Q1 and Q2 have a common root, it must be
also a root of Q2(y)−Q1(y) = 2y+ 1+ 1/α , yielding
y =−(1+α)/(2α) and 0 = Q1(y) =− f2(α)/(24α).

Thus the values of α for which the two curves are tan-
gent must be contained in the set of zeros of f1 and f2,
namely 2/3, 3/2, and (13±

√
601)/12.

Remark: The fact that the two conics in P2(C) meet in
four points, counted with multiplicities, is a special case
of Bézout’s theorem: two curves in P2(C) of degrees
m,n and not sharing any common component meet in
exactly mn points when counted with multiplicity.

Many solvers were surprised that the proposers chose
the parameter 1/24 to give two rational roots and two
nonrational roots. In fact, they had no choice in the
matter: attempting to make all four roots rational by
replacing 1/24 by β amounts to asking for β 2 +β and
β 2 + β + 1 to be perfect squares. This cannot happen
outside of trivial cases (β = 0,−1) ultimately because
the elliptic curve 24A1 (in Cremona’s notation) over Q
has rank 0. (Thanks to Noam Elkies for providing this
computation.)

However, there are choices that make the radical milder,
e.g., β = 1/3 gives β 2 + β = 4/9 and β 2 + β + 1 =
13/9, while β = 3/5 gives β 2 +β = 24/25 and β 2 +
β +1 = 49/25.

A–2 The minimum is 4, achieved by the square with vertices
(±1,±1).



2

First solution: To prove that 4 is a lower bound, let S be
a convex set of the desired form. Choose A,B,C,D ∈ S
lying on the branches of the two hyperbolas, with A in
the upper right quadrant, B in the upper left, C in the
lower left, D in the lower right. Then the area of the
quadrilateral ABCD is a lower bound for the area of S.

Write A = (a,1/a), B = (−b,1/b), C = (−c,−1/c),
D = (d,−1/d) with a,b,c,d > 0. Then the area of the
quadrilateral ABCD is

1
2
(a/b+b/c+ c/d +d/a+b/a+ c/b+d/c+a/d),

which by the arithmetic-geometric mean inequality is at
least 4.

Second solution: Choose A,B,C,D as in the first solu-
tion. Note that both the hyperbolas and the area of the
convex hull of ABCD are invariant under the transfor-
mation (x,y) 7→ (xm,y/m) for any m > 0. For m small,
the counterclockwise angle from the line AC to the line
BD approaches 0; for m large, this angle approaches
π . By continuity, for some m this angle becomes π/2,
that is, AC and BD become perpendicular. The area of
ABCD is then AC ·BD.

It thus suffices to note that AC≥ 2
√

2 (and similarly for
BD). This holds because if we draw the tangent lines to
the hyperbola xy = 1 at the points (1,1) and (−1,−1),
then A and C lie outside the region between these lines.
If we project the segment AC orthogonally onto the line
x = y = 1, the resulting projection has length at least
2
√

2, so AC must as well.

Third solution: (by Richard Stanley) Choose A,B,C,D
as in the first solution. Now fixing A and C, move B and
D to the points at which the tangents to the curve are
parallel to the line AC. This does not increase the area
of the quadrilateral ABCD (even if this quadrilateral is
not convex).

Note that B and D are now diametrically opposite; write
B = (−x,1/x) and D = (x,−1/x). If we thus repeat the
procedure, fixing B and D and moving A and C to the
points where the tangents are parallel to BD, then A and
C must move to (x,1/x) and (−x,−1/x), respectively,
forming a rectangle of area 4.

Remark: Many geometric solutions are possible. An
example suggested by David Savitt (due to Chris
Brewer): note that AD and BC cross the positive and
negative x-axes, respectively, so the convex hull of
ABCD contains O. Then check that the area of trian-
gle OAB is at least 1, et cetera.

A–3 Assume that we have an ordering of 1,2, . . . ,3k+1 such
that no initial subsequence sums to 0 mod 3. If we omit
the multiples of 3 from this ordering, then the remain-
ing sequence mod 3 must look like 1,1,−1,1,−1, . . .
or −1,−1,1,−1,1, . . .. Since there is one more integer
in the ordering congruent to 1 mod 3 than to −1, the
sequence mod 3 must look like 1,1,−1,1,−1, . . ..

It follows that the ordering satisfies the given condition
if and only if the following two conditions hold: the
first element in the ordering is not divisible by 3, and
the sequence mod 3 (ignoring zeroes) is of the form
1,1,−1,1,−1, . . .. The two conditions are independent,
and the probability of the first is (2k+1)/(3k+1) while
the probability of the second is 1/

(2k+1
k

)
, since there

are
(2k+1

k

)
ways to order (k+1) 1’s and k −1’s. Hence

the desired probability is the product of these two, or
k!(k+1)!

(3k+1)(2k)! .

A–4 Note that n is a repunit if and only if 9n+ 1 = 10m for
some power of 10 greater than 1. Consequently, if we
put

g(n) = 9 f
(

n−1
9

)
+1,

then f takes repunits to repunits if and only if g takes
powers of 10 greater than 1 to powers of 10 greater than
1. We will show that the only such functions g are those
of the form g(n) = 10cnd for d ≥ 0, c ≥ 1− d (all of
which clearly work), which will mean that the desired
polynomials f are those of the form

f (n) =
1
9
(10c(9n+1)d−1)

for the same c,d.

It is convenient to allow “powers of 10” to be of the
form 10k for any integer k. With this convention, it suf-
fices to check that the polynomials g taking powers of
10 greater than 1 to powers of 10 are of the form 10cnd

for any integers c,d with d ≥ 0.

First solution: Suppose that the leading term of g(x)
is axd , and note that a > 0. As x → ∞, we have
g(x)/xd → a; however, for x a power of 10 greater than
1, g(x)/xd is a power of 10. The set of powers of 10 has
no positive limit point, so g(x)/xd must be equal to a
for x = 10k with k sufficiently large, and we must have
a = 10c for some c. The polynomial g(x)− 10cxd has
infinitely many roots, so must be identically zero.

Second solution: We proceed by induction on d =
deg(g). If d = 0, we have g(n) = 10c for some c. Oth-
erwise, g has rational coefficients by Lagrange’s inter-
polation formula (this applies to any polynomial of de-
gree d taking at least d + 1 different rational numbers
to rational numbers), so g(0) = t is rational. More-
over, g takes each value only finitely many times, so the
sequence g(100),g(101), . . . includes arbitrarily large
powers of 10. Suppose that t 6= 0; then we can choose
a positive integer h such that the numerator of t is not
divisible by 10h. But for c large enough, g(10c)− t has
numerator divisible by 10b for some b > h, contradic-
tion.

Consequently, t = 0, and we may apply the induction
hypothesis to g(n)/n to deduce the claim.
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Remark: The second solution amounts to the fact that
g, being a polynomial with rational coefficients, is con-
tinuous for the 2-adic and 5-adic topologies on Q. By
contrast, the first solution uses the “∞-adic” topology,
i.e., the usual real topology.

A–5 In all solutions, let G be a finite group of order m.

First solution: By Lagrange’s theorem, if m is not di-
visible by p, then n = 0. Otherwise, let S be the set of
p-tuples (a0, . . . ,ap−1) ∈ Gp such that a0 · · ·ap−1 = e;
then S has cardinality mp−1, which is divisible by p.
Note that this set is invariant under cyclic permutation,
that is, if (a0, . . . ,ap−1) ∈ S, then (a1, . . . ,ap−1,a0) ∈ S
also. The fixed points under this operation are the tuples
(a, . . . ,a) with ap = e; all other tuples can be grouped
into orbits under cyclic permutation, each of which has
size p. Consequently, the number of a ∈ G with ap = e
is divisible by p; since that number is n+1 (only e has
order 1), this proves the claim.

Second solution: (by Anand Deopurkar) Assume that
n > 0, and let H be any subgroup of G of order p. Let S
be the set of all elements of G \H of order dividing p,
and let H act on G by conjugation. Each orbit has size
p except for those which consist of individual elements
g which commute with H. For each such g, g and H
generate an elementary abelian subgroup of G of order
p2. However, we can group these g into sets of size
p2− p based on which subgroup they generate together
with H. Hence the cardinality of S is divisible by p;
adding the p−1 nontrivial elements of H gives n≡−1
(mod p) as desired.

Third solution: Let S be the set of elements in G hav-
ing order dividing p, and let H be an elementary abelian
p-group of maximal order in G. If |H|= 1, then we are
done. So assume |H| = pk for some k ≥ 1, and let H
act on S by conjugation. Let T ⊂ S denote the set of
fixed points of this action. Then the size of every H-
orbit on S divides pk, and so |S| ≡ |T | (mod p). On the
other hand, H ⊂ T , and if T contained an element not
in H, then that would contradict the maximality of H.
It follows that H = T , and so |S| ≡ |T |= |H|= pk ≡ 0
(mod p), i.e., |S|= n+1 is a multiple of p.

Remark: This result is a theorem of Cauchy; the first
solution above is due to McKay. A more general (and
more difficult) result was proved by Frobenius: for any
positive integer m, if G is a finite group of order divis-
ible by m, then the number of elements of G of order
dividing m is a multiple of m.

A–6 For an admissible triangulation T , number the vertices
of P consecutively v1, . . . ,vn, and let ai be the number
of edges in T emanating from vi; note that ai ≥ 2 for
all i.

We first claim that a1 + · · ·+ an ≤ 4n− 6. Let V,E,F
denote the number of vertices, edges, and faces in T .
By Euler’s Formula, (F +1)−E+V = 2 (one must add
1 to the face count for the region exterior to P). Each

face has three edges, and each edge but the n outside
edges belongs to two faces; hence F = 2E−n. On the
other hand, each edge has two endpoints, and each of
the V − n internal vertices is an endpoint of at least 6
edges; hence a1+ · · ·+an+6(V −n)≤ 2E. Combining
this inequality with the previous two equations gives

a1 + · · ·+an ≤ 2E +6n−6(1−F +E)
= 4n−6,

as claimed.

Now set A3 = 1 and An = An−1 + 2n− 3 for n ≥ 4; we
will prove by induction on n that T has at most An trian-
gles. For n= 3, since a1+a2+a3 = 6, a1 = a2 = a3 = 2
and hence T consists of just one triangle.

Next assume that an admissible triangulation of an
(n− 1)-gon has at most An−1 triangles, and let T be
an admissible triangulation of an n-gon. If any ai = 2,
then we can remove the triangle of T containing vertex
vi to obtain an admissible triangulation of an (n− 1)-
gon; then the number of triangles in T is at most
An−1+1 < An by induction. Otherwise, all ai ≥ 3. Now
the average of a1, . . . ,an is less than 4, and thus there
are more ai = 3 than ai ≥ 5. It follows that there is a se-
quence of k consecutive vertices in P whose degrees are
3,4,4, . . . ,4,3 in order, for some k with 2 ≤ k ≤ n− 1
(possibly k = 2, in which case there are no degree 4
vertices separating the degree 3 vertices). If we remove
from T the 2k−1 triangles which contain at least one
of these vertices, then we are left with an admissible tri-
angulation of an (n−1)-gon. It follows that there are at
most An−1 + 2k− 1 ≤ An−1 + 2n− 3 = An triangles in
T . This completes the induction step and the proof.

Remark: We can refine the bound An somewhat. Sup-
posing that ai ≥ 3 for all i, the fact that a1 + · · ·+an ≤
4n− 6 implies that there are at least six more indices
i with ai = 3 than with ai ≥ 5. Thus there exist six
sequences with degrees 3,4, . . . ,4,3, of total length at
most n+ 6. We may thus choose a sequence of length
k ≤ b n

6c+ 1, so we may improve the upper bound to
An = An−1 +2b n

6c+1, or asymptotically 1
6 n2.

However (as noted by Noam Elkies), a hexagonal
swatch of a triangular lattice, with the boundary as close
to regular as possible, achieves asymptotically 1

6 n2 tri-
angles.

B–1 The problem fails if f is allowed to be constant, e.g.,
take f (n) = 1. We thus assume that f is nonconstant.
Write f (n) = ∑

d
i=0 aini with ai > 0. Then

f ( f (n)+1) =
d

∑
i=0

ai( f (n)+1)i

≡ f (1) (mod f (n)).

If n = 1, then this implies that f ( f (n)+ 1) is divisible
by f (n). Otherwise, 0 < f (1) < f (n) since f is non-
constant and has positive coefficients, so f ( f (n) + 1)
cannot be divisible by f (n).
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B–2 Put B = max0≤x≤1 | f ′(x)| and g(x) =
∫ x

0 f (y)dy. Since
g(0) = g(1) = 0, the maximum value of |g(x)| must oc-
cur at a critical point y∈ (0,1) satisfying g′(y) = f (y) =
0. We may thus take α = y hereafter.

Since
∫

α

0 f (x)dx =−
∫ 1−α

0 f (1−x)dx, we may assume
that α ≤ 1/2. By then substituting − f (x) for f (x) if
needed, we may assume that

∫
α

0 f (x)dx ≥ 0. From the
inequality f ′(x)≥−B, we deduce f (x)≤ B(α− x) for
0≤ x≤ α , so∫

α

0
f (x)dx≤

∫
α

0
B(α− x)dx

=− 1
2

B(α− x)2
∣∣∣∣α
0

=
α2

2
B≤ 1

8
B

as desired.

B–3 First solution: Observing that x2/2 = 13, x3/4 = 34,
x4/8 = 89, we guess that xn = 2n−1F2n+3, where Fk is
the k-th Fibonacci number. Thus we claim that xn =
2n−1
√

5
(α2n+3−α−(2n+3)), where α = 1+

√
5

2 , to make the

answer x2007 =
22006
√

5
(α3997−α−3997).

We prove the claim by induction; the base case x0 = 1 is
true, and so it suffices to show that the recursion xn+1 =
3xn+bxn

√
5c is satisfied for our formula for xn. Indeed,

since α2 = 3+
√

5
2 , we have

xn+1− (3+
√

5)xn =
2n−1
√

5
(2(α2n+5−α

−(2n+5))

− (3+
√

5)(α2n+3−α
−(2n+3)))

= 2n
α
−(2n+3).

Now 2nα−(2n+3) = ( 1−
√

5
2 )3(3−

√
5)n is between −1

and 0; the recursion follows since xn,xn+1 are integers.

Second solution: (by Catalin Zara) Since xn is rational,
we have 0 < xn

√
5− bxn

√
5c < 1. We now have the

inequalities

xn+1−3xn < xn
√

5 < xn+1−3xn +1

(3+
√

5)xn−1 < xn+1 < (3+
√

5)xn

4xn− (3−
√

5)< (3−
√

5)xn+1 < 4xn

3xn+1−4xn < xn+1
√

5 < 3xn+1−4xn +(3−
√

5).

Since 0 < 3−
√

5 < 1, this yields bxn+1
√

5c= 3xn+1−
4xn, so we can rewrite the recursion as xn+1 = 6xn−
4xn−1 for n ≥ 2. It is routine to solve this recursion to
obtain the same solution as above.

Remark: With an initial 1 prepended, this
becomes sequence A018903 in Sloane’s On-
Line Encyclopedia of Integer Sequences:
(http://www.research.att.com/~njas/

sequences/). Therein, the sequence is described as
the case S(1,5) of the sequence S(a0,a1) in which an+2
is the least integer for which an+2/an+1 > an+1/an.
Sloane cites D. W. Boyd, Linear recurrence relations
for some generalized Pisot sequences, Advances in
Number Theory (Kingston, ON, 1991), Oxford Univ.
Press, New York, 1993, p. 333–340.

B–4 The number of pairs is 2n+1. The degree condition
forces P to have degree n and leading coefficient ±1;
we may count pairs in which P has leading coefficient
1 as long as we multiply by 2 afterward.

Factor both sides:

(P(X)+Q(X)i)(P(X)−Q(X)i)

=
n−1

∏
j=0

(X− exp(2πi(2 j+1)/(4n)))

·
n−1

∏
j=0

(X + exp(2πi(2 j+1)/(4n))).

Then each choice of P,Q corresponds to equating
P(X) + Q(X)i with the product of some n factors on
the right, in which we choose exactly of the two fac-
tors for each j = 0, . . . ,n− 1. (We must take exactly n
factors because as a polynomial in X with complex co-
efficients, P(X)+Q(X)i has degree exactly n. We must
choose one for each j to ensure that P(X)+Q(X)i and
P(X)−Q(X)i are complex conjugates, so that P,Q have
real coefficients.) Thus there are 2n such pairs; multi-
plying by 2 to allow P to have leading coefficient −1
yields the desired result.

Remark: If we allow P and Q to have complex coeffi-
cients but still require deg(P)> deg(Q), then the num-
ber of pairs increases to 2

(2n
n

)
, as we may choose any n

of the 2n factors of X2n+1 to use to form P(X)+Q(X)i.

B–5 For n an integer, we have
⌊ n

k

⌋
= n− j

k for j the unique
integer in {0, . . . ,k−1} congruent to n modulo k; hence

k−1

∏
j=0

(⌊n
k

⌋
− n− j

k

)
= 0.

By expanding this out, we obtain the desired polynomi-
als P0(n), . . . ,Pk−1(n).

Remark: Variants of this solution are possible that con-
struct the Pi less explicitly, using Lagrange interpolation
or Vandermonde determinants.

B–6 (Suggested by Oleg Golberg) Assume n≥ 2, or else the
problem is trivially false. Throughout this proof, any Ci
will be a positive constant whose exact value is imma-
terial. As in the proof of Stirling’s approximation, we
estimate for any fixed c ∈ R,

n

∑
i=1

(i+ c) log i =
1
2

n2 logn− 1
4

n2 +O(n logn)
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by comparing the sum to an integral. This gives

nn2/2−C1ne−n2/4 ≤ 11+c22+c · · ·nn+c

≤ nn2/2+C2ne−n2/4.

We now interpret f (n) as counting the number of n-
tuples (a1, . . . ,an) of nonnegative integers such that

a11!+ · · ·+ann! = n!.

For an upper bound on f (n), we use the inequalities
0 ≤ ai ≤ n!/i! to deduce that there are at most n!/i!+
1≤ 2(n!/i!) choices for ai. Hence

f (n)≤ 2n n!
1!
· · · n!

n!
= 2n2132 · · ·nn−1

≤ nn2/2+C3ne−n2/4.

For a lower bound on f (n), we note that if 0 ≤ ai <
(n− 1)!/i! for i = 2, . . . ,n− 1 and an = 0, then 0 ≤
a22!+ · · ·+ann!≤ n!, so there is a unique choice of a1
to complete this to a solution of a11!+ · · ·+ann! = n!.
Hence

f (n)≥ (n−1)!
2!

· · · (n−1)!
(n−1)!

= 3142 · · ·(n−1)n−3

≥ nn2/2+C4ne−n2/4.


