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A–1 The function g(x) = f (x,0) works. Substituting
(x,y,z) = (0,0,0) into the given functional equa-
tion yields f (0,0) = 0, whence substituting (x,y,z) =
(x,0,0) yields f (x,0) + f (0,x) = 0. Finally, substi-
tuting (x,y,z) = (x,y,0) yields f (x,y) = − f (y,0) −
f (0,x) = g(x)−g(y).

Remark: A similar argument shows that the possible
functions g are precisely those of the form f (x,0)+ c
for some c.

A–2 Barbara wins using one of the following strategies.

First solution: Pair each entry of the first row with the
entry directly below it in the second row. If Alan ever
writes a number in one of the first two rows, Barbara
writes the same number in the other entry in the pair. If
Alan writes a number anywhere other than the first two
rows, Barbara does likewise. At the end, the resulting
matrix will have two identical rows, so its determinant
will be zero.

Second solution: (by Manjul Bhargava) Whenever
Alan writes a number x in an entry in some row, Bar-
bara writes −x in some other entry in the same row. At
the end, the resulting matrix will have all rows summing
to zero, so it cannot have full rank.

A–3 We first prove that the process stops. Note first that
the product a1 · · ·an remains constant, because a jak =
gcd(a j,ak) lcm(a j,ak). Moreover, the last number in
the sequence can never decrease, because it is always
replaced by its least common multiple with another
number. Since it is bounded above (by the product of
all of the numbers), the last number must eventually
reach its maximum value, after which it remains con-
stant throughout. After this happens, the next-to-last
number will never decrease, so it eventually becomes
constant, and so on. After finitely many steps, all of the
numbers will achieve their final values, so no more steps
will be possible. This only happens when a j divides ak
for all pairs j < k.

We next check that there is only one possible final se-
quence. For p a prime and m a nonnegative integer, we
claim that the number of integers in the list divisible
by pm never changes. To see this, suppose we replace
a j,ak by gcd(a j,ak), lcm(a j,ak). If neither of a j,ak is
divisible by pm, then neither of gcd(a j,ak), lcm(a j,ak)
is either. If exactly one a j,ak is divisible by pm, then
lcm(a j,ak) is divisible by pm but gcd(a j,ak) is not.

gcd(a j,ak), lcm(a j,ak) are as well.

If we started out with exactly h numbers not divisible
by pm, then in the final sequence a′1, . . . ,a

′
n, the num-

bers a′h+1, . . . ,a
′
n are divisible by pm while the numbers

a′1, . . . ,a
′
h are not. Repeating this argument for each pair

(p,m) such that pm divides the initial product a1, . . . ,an,
we can determine the exact prime factorization of each
of a′1, . . . ,a

′
n. This proves that the final sequence is

unique.

Remark: (by David Savitt and Noam Elkies) Here are
two other ways to prove the termination. One is to ob-
serve that ∏ j a j

j is strictly increasing at each step, and
bounded above by (a1 · · ·an)

n. The other is to notice
that a1 is nonincreasing but always positive, so even-
tually becomes constant; then a2 is nonincreasing but
always positive, and so on.

Reinterpretation: For each p, consider the sequence
consisting of the exponents of p in the prime factoriza-
tions of a1, . . . ,an. At each step, we pick two positions
i and j such that the exponents of some prime p are in
the wrong order at positions i and j. We then sort these
two position into the correct order for every prime p
simultaneously.

It is clear that this can only terminate with all se-
quences being sorted into the correct order. We must
still check that the process terminates; however, since
all but finitely many of the exponent sequences consist
of all zeroes, and each step makes a nontrivial switch
in at least one of the other exponent sequences, it is
enough to check the case of a single exponent sequence.
This can be done as in the first solution.

Remark: Abhinav Kumar suggests the following proof
that the process always terminates in at most

(n
2

)
steps.

(This is a variant of the worst-case analysis of the bub-
ble sort algorithm.)

Consider the number of pairs (k, l) with 1 ≤ k < l ≤ n
such that ak does not divide al (call these bad pairs).
At each step, we find one bad pair (i, j) and eliminate
it, and we do not touch any pairs that do not involve
either i or j. If i < k < j, then neither of the pairs (i,k)
and (k, j) can become bad, because ai is replaced by a
divisor of itself, while a j is replaced by a multiple of
itself. If k < i, then (k, i) can only become a bad pair if
ak divided ai but not a j, in which case (k, j) stops being
bad. Similarly, if k > j, then (i,k) and ( j,k) either stay
the same or switch status. Hence the number of bad
pairs goes down by at least 1 each time; since it is at
most

(n
2

)
to begin with, this is an upper bound for the

number of steps.

Remark: This problem is closely related to the clas-
sification theorem for finite abelian groups. Namely,
if a1, . . . ,an and a′1, . . . ,a

′
n are the sequences obtained

at two different steps in the process, then the abelian
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groups Z/a1Z×·· ·×Z/anZ and Z/a′1Z×·· ·×Z/a′nZ
are isomorphic. The final sequence gives a canonical
presentation of this group; the terms of this sequence
are called the elementary divisors or invariant factors
of the group.

Remark: (by Tom Belulovich) A lattice is a partially
ordered set L in which for any two x,y ∈ L, there is a
unique minimal element z with z ≥ x and z ≥ y, called
the join and denoted x∧ y, and there is a unique max-
imal element z with z ≤ x and z ≤ y, called the meet
and denoted x∨ y. In terms of a lattice L, one can pose
the following generalization of the given problem. Start
with a1, . . . ,an ∈ L. If i < j but ai 6≤ a j, it is permit-
ted to replace ai,a j by ai∨a j,ai∧a j, respectively. The
same argument as above shows that this always termi-
nates in at most

(n
2

)
steps. The question is, under what

conditions on the lattice L is the final sequence uniquely
determined by the initial sequence?

It turns out that this holds if and only if L is distributive,
i.e., for any x,y,z ∈ L,

x∧ (y∨ z) = (x∧ y)∨ (x∧ z).

(This is equivalent to the same axiom with the oper-
ations interchanged.) For example, if L is a Boolean
algebra, i.e., the set of subsets of a given set S under in-
clusion, then ∧ is union, ∨ is intersection, and the dis-
tributive law holds. Conversely, any finite distributive
lattice is contained in a Boolean algebra by a theorem
of Birkhoff. The correspondence takes each x ∈ L to
the set of y ∈ L such that x ≥ y and y cannot be written
as a join of two elements of L \ {y}. (See for instance
Birkhoff, Lattice Theory, Amer. Math. Soc., 1967.)

On one hand, if L is distributive, it can be shown that
the j-th term of the final sequence is equal to the meet
of ai1 ∧·· ·∧ai j over all sequences 1≤ i1 < · · ·< i j ≤ n.
For instance, this can be checked by forming the small-
est subset L′ of L containing a1, . . . ,an and closed under
meet and join, then embedding L′ into a Boolean alge-
bra using Birkhoff’s theorem, then checking the claim
for all Boolean algebras. It can also be checked di-
rectly (as suggested by Nghi Nguyen) by showing that
for j = 1, . . . ,n, the meet of all joins of j-element sub-
sets of a1, . . . ,an is invariant at each step.

On the other hand, a lattice fails to be distributive if
and only if it contains five elements a,b,c,0,1 such that
either the only relations among them are implied by

1≥ a,b,c≥ 0

(this lattice is sometimes called the diamond), or the
only relations among them are implied by

1≥ a≥ b≥ 0, 1≥ c≥ 0

(this lattice is sometimes called the pentagon). (For a
proof, see the Birkhoff reference given above.) For each
of these examples, the initial sequence a,b,c fails to de-
termine the final sequence; for the diamond, we can end

up with 0,∗,1 for any of ∗= a,b,c, whereas for the pen-
tagon we can end up with 0,∗,1 for any of ∗= a,b.

Consequently, the final sequence is determined by the
initial sequence if and only if L is distributive.

A–4 The sum diverges. From the definition, f (x) = x on
[1,e], x lnx on (e,ee], x lnx ln lnx on (ee,eee

], and so
forth. It follows that on [1,∞), f is positive, continu-
ous, and increasing. Thus ∑

∞
n=1

1
f (n) , if it converges, is

bounded below by
∫

∞

1
dx
f (x) ; it suffices to prove that the

integral diverges.

Write ln1 x = lnx and lnk x = ln(lnk−1 x)
for k ≥ 2; similarly write exp1 x = ex and
expk x = eexpk−1 x. If we write y = lnk x, then
x = expk y and dx = (expk y)(expk−1 y) · · ·(exp1 y)dy =

x(ln1 x) · · ·(lnk−1 x)dy. Now on [expk−1 1,expk 1], we
have f (x) = x(ln1 x) · · ·(lnk−1 x), and thus substituting
y = lnk x yields

∫ expk 1

expk−1 1

dx
f (x)

=
∫ 1

0
dy = 1.

It follows that
∫

∞

1
dx
f (x) = ∑

∞
k=1

∫ expk 1
expk−1 1

dx
f (x) diverges, as

desired.

A–5 Form the polynomial P(z) = f (z)+ ig(z) with complex
coefficients. It suffices to prove that P has degree at
least n−1, as then one of f ,g must have degree at least
n−1.

By replacing P(z) with aP(z) + b for suitable a,b ∈
C, we can force the regular n-gon to have vertices
ζn,ζ

2
n , . . . ,ζ

n
n for ζn = exp(2πi/n). It thus suffices to

check that there cannot exist a polynomial P(z) of de-
gree at most n−2 such that P(i) = ζ i

n for i = 1, . . . ,n.

We will prove more generally that for any complex
number t /∈ {0,1}, and any integer m ≥ 1, any polyno-
mial Q(z) for which Q(i) = t i for i= 1, . . . ,m has degree
at least m−1. There are several ways to do this.

First solution: If Q(z) has degree d and leading coeffi-
cient c, then R(z) = Q(z+1)− tQ(z) has degree d and
leading coefficient (1− t)c. However, by hypothesis,
R(z) has the distinct roots 1,2, . . . ,m− 1, so we must
have d ≥ m−1.

Second solution: We proceed by induction on m. For
the base case m = 1, we have Q(1) = t1 6= 0, so Q must
be nonzero, and so its degree is at least 0. Given the
assertion for m− 1, if Q(i) = t i for i = 1, . . . ,m, then
the polynomial R(z) = (t− 1)−1(Q(z+ 1)−Q(z)) has
degree one less than that of Q, and satisfies R(i) = t i

for i = 1, . . . ,m− 1. Since R must have degree at least
m−2 by the induction hypothesis, Q must have degree
at least m−1.

Third solution: We use the method of finite differ-
ences (as in the second solution) but without induction.
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Namely, the (m− 1)-st finite difference of P evaluated
at 1 equals

m−1

∑
j=0

(−1) j
(

m−1
j

)
Q(m− j) = t(1− t)m−1 6= 0,

which is impossible if Q has degree less than m−1.

Remark: One can also establish the claim by comput-
ing a Vandermonde-type determinant, or by using the
Lagrange interpolation formula to compute the leading
coefficient of Q.

A–6 For notational convenience, we will interpret the prob-
lem as allowing the empty subsequence, whose product
is the identity element of the group. To solve the prob-
lem in the interpretation where the empty subsequence
is not allowed, simply append the identity element to
the sequence given by one of the following solutions.

First solution: Put n= |G|. We will say that a sequence
S produces an element g ∈ G if g occurs as the product
of some subsequence of S. Let H be the set of elements
produced by the sequence S.

Start with S equal to the empty sequence. If at any point
the set H−1H = {h1h2 : h−1

1 ,h2 ∈H} fails to be all of G,
extend S by appending an element g of G not in H−1H.
Then Hg∩H must be empty, otherwise there would be
an equation of the form h1g = h2 with h1,h2 ∈ G, or
g = h−1

1 h2, a contradiction. Thus we can extend S by
one element and double the size of H.

After k ≤ log2 n steps, we must obtain a sequence S =
a1, . . . ,ak for which H−1H = G. Then the sequence
a−1

k , . . . ,a−1
1 ,a1, . . . ,ak produces all of G and has length

at most (2/ ln2) lnn.

Second solution:
Put m = |H|. We will show that we can append one
element g to S so that the resulting sequence of k + 1
elements will produce at least 2m−m2/n elements of
G. To see this, we compute

∑
g∈G
|H ∪Hg|= ∑

g∈G
(|H|+ |Hg|− |H ∩Hg|)

= 2mn− ∑
g∈G
|H ∩Hg|

= 2mn−|{(g,h) ∈ G2 : h ∈ H ∩Hg}|
= 2mn− ∑

h∈H
|{g ∈ G : h ∈ Hg}|

= 2mn− ∑
h∈H
|H−1h|

= 2mn−m2.

By the pigeonhole principle, we have |H ∪Hg| ≥ 2m−
m2/n for some choice of g, as claimed.

In other words, by extending the sequence by one ele-
ment, we can replace the ratio s= 1−m/n (i.e., the frac-
tion of elements of G not generated by S) by a quantity

no greater than

1− (2m−m2/n)/n = s2.

We start out with k = 0 and s = 1− 1/n; after k steps,
we have s ≤ (1− 1/n)2k

. It is enough to prove that for
some c > 0, we can always find an integer k ≤ c lnn
such that (

1− 1
n

)2k

<
1
n
,

as then we have n−m < 1 and hence H = G.

To obtain this last inequality, put

k = b2log2 nc< (2/ ln2) lnn,

so that 2k+1 ≥ n2. From the facts that lnn≤ ln2+(n−
2)/2 ≤ n/2 and ln(1− 1/n) < −1/n for all n ≥ 2, we
have

2k ln
(

1− 1
n

)
<− n2

2n
=−n

2
<− lnn,

yielding the desired inequality.

Remark: An alternate approach in the second solution
is to distinguish betwen the cases of H small (i.e., m <
n1/2, in which case m can be replaced by a value no
less than 2m−1) and H large. This strategy is used in a
number of recent results of Bourgain, Tao, Helfgott, and
others on small doubling or small tripling of subsets of
finite groups.

In the second solution, if we avoid the rather weak in-
equality lnn≤ n/2, we instead get sequences of length
log2(n lnn) = log2(n)+ log2(lnn). This is close to op-
timal: one cannot use fewer than log2 n terms because
the number of subsequences must be at least n.

B–1 There are at most two such points. For example,
the points (0,0) and (1,0) lie on a circle with center
(1/2,x) for any real number x, not necessarily rational.

On the other hand, suppose P = (a,b),Q = (c,d),R =
(e, f ) are three rational points that lie on a circle. The
midpoint M of the side PQ is ((a + c)/2,(b + d)/2),
which is again rational. Moreover, the slope of the line
PQ is (d−b)/(c−a), so the slope of the line through M
perpendicular to PQ is (a−c)/(b−d), which is rational
or infinite.

Similarly, if N is the midpoint of QR, then N is a rational
point and the line through N perpendicular to QR has
rational slope. The center of the circle lies on both of
these lines, so its coordinates (g,h) satisfy two linear
equations with rational coefficients, say Ag+ Bh = C
and Dg+Eh = F . Moreover, these equations have a
unique solution. That solution must then be

g = (CE−BD)/(AE−BD)

h = (AF−BC)/(AE−BD)
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(by elementary algebra, or Cramer’s rule), so the center
of the circle is rational. This proves the desired result.

Remark: The above solution is deliberately more ver-
bose than is really necessary. A shorter way to say this
is that any two distinct rational points determine a ra-
tional line (a line of the form ax+by+c = 0 with a,b,c
rational), while any two nonparallel rational lines inter-
sect at a rational point. A similar statement holds with
the rational numbers replaced by any field.

Remark: A more explicit argument is to show that
the equation of the circle through the rational points
(x1,y1),(x2,y2),(x3,y3) is

0 = det


x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y2
3 x3 y3 1

x2 + y2 x y 1


which has the form a(x2 + y2) + dx + ey + f = 0
for a,d,e, f rational. The center of this circle is
(−d/(2a),−e/(2a)), which is again a rational point.

B–2 We claim that Fn(x) = (lnx− an)xn/n!, where an =
∑

n
k=1 1/k. Indeed, temporarily write Gn(x) = (lnx−

an)xn/n! for x > 0 and n ≥ 1; then limx→0 Gn(x) = 0
and G′n(x) = (lnx−an +1/n)xn−1/(n−1)! = Gn−1(x),
and the claim follows by the Fundamental Theorem of
Calculus and induction on n.

Given the claim, we have Fn(1) = −an/n! and so we
need to evaluate − limn→∞

an
lnn . But since the function

1/x is strictly decreasing for x positive, ∑
n
k=2 1/k = an−

1 is bounded below by
∫ n

2 dx/x = lnn− ln2 and above
by
∫ n

1 dx/x = lnn. It follows that limn→∞
an
lnn = 1, and

the desired limit is −1.

B–3 The largest possible radius is
√

2
2 . It will be convenient

to solve the problem for a hypercube of side length 2
instead, in which case we are trying to show that the
largest radius is

√
2.

Choose coordinates so that the interior of the hypercube
is the set H = [−1,1]4 in R4. Let C be a circle centered
at the point P. Then C is contained both in H and its
reflection across P; these intersect in a rectangular par-
alellepiped each of whose pairs of opposite faces are at
most 2 unit apart. Consequently, if we translate C so
that its center moves to the point O = (0,0,0,0) at the
center of H, then it remains entirely inside H.

This means that the answer we seek equals the largest
possible radius of a circle C contained in H and
centered at O. Let v1 = (v11, . . . ,v14) and v2 =
(v21, . . . ,v24) be two points on C lying on radii perpen-
dicular to each other. Then the points of the circle can
be expressed as v1 cosθ +v2 sinθ for 0≤ θ < 2π . Then
C lies in H if and only if for each i, we have

|v1i cosθ + v2i sinθ | ≤ 1 (0≤ θ < 2π).

In geometric terms, the vector (v1i,v2i) in R2 has
dot product at most 1 with every unit vector. Since

this holds for the unit vector in the same direction as
(v1i,v2i), we must have

v2
1i + v2

2i ≤ 1 (i = 1, . . . ,4).

Conversely, if this holds, then the Cauchy-Schwarz in-
equality and the above analysis imply that C lies in H.

If r is the radius of C, then

2r2 =
4

∑
i=1

v2
1i +

4

∑
i=1

v2
2i

=
4

∑
i=1

(v2
1i + v2

2i)

≤ 4,

so r ≤
√

2. Since this is achieved by the circle through
(1,1,0,0) and (0,0,1,1), it is the desired maximum.

Remark: One may similarly ask for the radius of the
largest k-dimensional ball inside an n-dimensional unit
hypercube; the given problem is the case (n,k) = (4,2).
Daniel Kane gives the following argument to show that
the maximum radius in this case is 1

2

√ n
k . (Thanks for

Noam Elkies for passing this along.)

We again scale up by a factor of 2, so that we are trying
to show that the maximum radius r of a k-dimensional
ball contained in the hypercube [−1,1]n is

√ n
k . Again,

there is no loss of generality in centering the ball at the
origin. Let T : Rk → Rn be a similitude carrying the
unit ball to this embedded k-ball. Then there exists a
vector vi ∈Rk such that for e1, . . . ,en the standard basis
of Rn, x · vi = T (x) · ei for all x ∈ Rk. The condition of
the problem is equivalent to requiring |vi| ≤ 1 for all i,
while the radius r of the embedded ball is determined
by the fact that for all x ∈ Rk,

r2(x · x) = T (x) ·T (x) =
n

∑
i=1

x · vi.

Let M be the matrix with columns v1, . . . ,vk; then
MMT = r2Ik, for Ik the k× k identity matrix. We then
have

kr2 = Trace(r2Ik) = Trace(MMT )

= Trace(MT M) =
n

∑
i=1
|vi|2

≤ n,

yielding the upper bound r ≤
√ n

k .

To show that this bound is optimal, it is enough to show
that one can find an orthogonal projection of Rn onto Rk

so that the projections of the ei all have the same norm
(one can then rescale to get the desired configuration
of v1, . . . ,vn). We construct such a configuration by a
“smoothing” argument. Startw with any projection. Let
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w1, . . . ,wn be the projections of e1, . . . ,en. If the desired
condition is not achieved, we can choose i, j such that

|wi|2 <
1
n
(|w1|2 + · · ·+ |wn|2)< |w j|2.

By precomposing with a suitable rotation that fixes
eh for h 6= i, j, we can vary |wi|, |w j| without varying
|wi|2 + |w j|2 or |wh| for h 6= i, j. We can thus choose
such a rotation to force one of |wi|2, |w j|2 to become
equal to 1

n (|w1|2 + · · ·+ |wn|2). Repeating at most n−1
times gives the desired configuration.

B–4 We use the identity given by Taylor’s theorem:

h(x+ y) =
deg(h)

∑
i=0

h(i)(x)
i!

yi.

In this expression, h(i)(x)/i! is a polynomial in x with
integer coefficients, so its value at an integer x is an
integer.

For x = 0, . . . , p−1, we deduce that

h(x+ p)≡ h(x)+ ph′(x) (mod p2).

(This can also be deduced more directly using the bino-
mial theorem.) Since we assumed h(x) and h(x + p)
are distinct modulo p2, we conclude that h′(x) 6≡ 0
(mod p). Since h′ is a polynomial with integer coef-
ficients, we have h′(x) ≡ h′(x+mp) (mod p) for any
integer m, and so h′(x) 6≡ 0 (mod p) for all integers x.

Now for x = 0, . . . , p2−1 and y = 0, . . . , p−1, we write

h(x+ yp2)≡ h(x)+ p2yh′(x) (mod p3).

Thus h(x),h(x+ p2), . . . ,h(x+(p−1)p2) run over all of
the residue classes modulo p3 congruent to h(x) mod-
ulo p2. Since the h(x) themselves cover all the residue
classes modulo p2, this proves that h(0), . . . ,h(p3− 1)
are distinct modulo p3.

Remark: More generally, the same proof shows that
for any integers d,e > 1, h permutes the residue classes
modulo pd if and only if it permutes the residue classes
modulo pe. The argument used in the proof is related
to a general result in number theory known as Hensel’s
lemma.

B–5 The functions f (x) = x+ n and f (x) = −x+ n for any
integer n clearly satisfy the condition of the problem;
we claim that these are the only possible f .

Let q = a/b be any rational number with gcd(a,b) = 1
and b > 0. For n any positive integer, we have

f ( an+1
bn )− f ( a

b )
1
bn

= bn f
(

an+1
bn

)
−nb f

(a
b

)
is an integer by the property of f . Since f is differ-
entiable at a/b, the left hand side has a limit. It fol-
lows that for sufficiently large n, both sides must be

equal to some integer c = f ′( a
b ): f ( an+1

bn ) = f ( a
b )+

c
bn .

Now c cannot be 0, since otherwise f ( an+1
bn ) = f ( a

b ) for
sufficiently large n has denominator b rather than bn.
Similarly, |c| cannot be greater than 1: otherwise if we
take n = k|c| for k a sufficiently large positive integer,
then f ( a

b ) +
c

bn has denominator bk, contradicting the
fact that f ( an+1

bn ) has denominator bn. It follows that
c = f ′( a

b ) =±1.

Thus the derivative of f at any rational number is ±1.
Since f is continuously differentiable, we conclude that
f ′(x) = 1 for all real x or f ′(x) =−1 for all real x. Since
f (0) must be an integer (a rational number with denom-
inator 1), f (x)= x+n or f (x)=−x+n for some integer
n.

Remark: After showing that f ′(q) is an integer for each
q, one can instead argue that f ′ is a continuous function
from the rationals to the integers, so must be constant.
One can then write f (x) = ax+b and check that b ∈ Z
by evaluation at a = 0, and that a =±1 by evaluation at
x = 1/a.

B–6 In all solutions, let Fn,k be the number of k-limited per-
mutations of {1, . . . ,n}.
First solution: (by Jacob Tsimerman) Note that any
permutation is k-limited if and only if its inverse is k-
limited. Consequently, the number of k-limited per-
mutations of {1, . . . ,n} is the same as the number of
k-limited involutions (permutations equal to their in-
verses) of {1, . . . ,n}.
We use the following fact several times: the number of
involutions of {1, . . . ,n} is odd if n = 0,1 and even oth-
erwise. This follows from the fact that non-involutions
come in pairs, so the number of involutions has the same
parity as the number of permutations, namely n!.

For n≤ k+1, all involutions are k-limited. By the pre-
vious paragraph, Fn,k is odd for n = 0,1 and even for
n = 2, . . . ,k+1.

For n > k + 1, group the k-limited involutions into
classes based on their actions on k + 2, . . . ,n. Note
that for C a class and σ ∈ C, the set of elements of
A = {1, . . . ,k+ 1} which map into A under σ depends
only on C, not on σ . Call this set S(C); then the size of
C is exactly the number of involutions of S(C). Conse-
quently, |C| is even unless S(C) has at most one element.
However, the element 1 cannot map out of A because we
are looking at k-limited involutions. Hence if S(C) has
one element and σ ∈C, we must have σ(1) = 1. Since
σ is k-limited and σ(2) cannot belong to A, we must
have σ(2) = k+ 2. By induction, for i = 3, . . . ,k+ 1,
we must have σ(i) = k+ i.

If n < 2k+ 1, this shows that no class C of odd cardi-
nality can exist, so Fn,k must be even. If n ≥ 2k + 1,
the classes of odd cardinality are in bijection with k-
limited involutions of {2k + 2, . . . ,n}, so Fn,k has the
same parity as Fn−2k−1,k. By induction on n, we deduce
the desired result.
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Second solution: (by Yufei Zhao) Let Mn,k be the n×n
matrix with

(Mn,k)i j =

{
1 |i− j| ≤ k
0 otherwise.

Write det(Mn,k) as the sum over permutations σ of
{1, . . . ,n} of (Mn,k)1σ(1) · · ·(Mn,k)nσ(n) times the signa-
ture of σ . Then σ contributes ±1 to det(Mn,k) if σ is
k-limited and 0 otherwise. We conclude that

det(Mn,k)≡ Fn,k (mod 2).

For the rest of the solution, we interpret Mn,k as a matrix
over the field of two elements. We compute its determi-
nant using linear algebra modulo 2.

We first show that for n≥ 2k+1,

Fn,k ≡ Fn−2k−1,k (mod 2),

provided that we interpret F0,k = 1. We do this by com-
puting det(Mn,k) using row and column operations. We
will verbally describe these operations for general k,
while illustrating with the example k = 3.

To begin with, Mn,k has the following form.

1 1 1 1 0 0 0 /0
1 1 1 1 1 0 0 /0
1 1 1 1 1 1 0 /0
1 1 1 1 1 1 1 /0
0 1 1 1 1 1 1 ?
0 0 1 1 1 1 1 ?
0 0 0 1 1 1 1 ?
/0 /0 /0 /0 ? ? ? ∗


In this presentation, the first 2k+ 1 rows and columns
are shown explicitly; the remaining rows and columns
are shown in a compressed format. The symbol /0 in-
dicates that the unseen entries are all zeroes, while the
symbol ? indicates that they are not. The symbol ∗ in
the lower right corner represents the matrix Fn−2k−1,k.
We will preserve the unseen structure of the matrix by
only adding the first k+1 rows or columns to any of the
others.

We first add row 1 to each of rows 2, . . . ,k+1.

1 1 1 1 0 0 0 /0
0 0 0 0 1 0 0 /0
0 0 0 0 1 1 0 /0
0 0 0 0 1 1 1 /0
0 1 1 1 1 1 1 ?
0 0 1 1 1 1 1 ?
0 0 0 1 1 1 1 ?
/0 /0 /0 /0 ? ? ? ∗



We next add column 1 to each of columns 2, . . . ,k+1.

1 0 0 0 0 0 0 /0
0 0 0 0 1 0 0 /0
0 0 0 0 1 1 0 /0
0 0 0 0 1 1 1 /0
0 1 1 1 1 1 1 ?
0 0 1 1 1 1 1 ?
0 0 0 1 1 1 1 ?
/0 /0 /0 /0 ? ? ? ∗


For i = 2, for each of j = i+1, . . . ,2k+1 for which the
( j,k+ i)-entry is nonzero, add row i to row j.

1 0 0 0 0 0 0 /0
0 0 0 0 1 0 0 /0
0 0 0 0 0 1 0 /0
0 0 0 0 0 1 1 /0
0 1 1 1 0 1 1 ?
0 0 1 1 0 1 1 ?
0 0 0 1 0 1 1 ?
/0 /0 /0 /0 /0 ? ? ∗


Repeat the previous step for i = 3, . . . ,k+ 1 in succes-
sion. 

1 0 0 0 0 0 0 /0
0 0 0 0 1 0 0 /0
0 0 0 0 0 1 0 /0
0 0 0 0 0 0 1 /0
0 1 1 1 0 0 0 ?
0 0 1 1 0 0 0 ?
0 0 0 1 0 0 0 ?
/0 /0 /0 /0 /0 /0 /0 ∗


Repeat the two previous steps with the roles of the rows
and columns reversed. That is, for i = 2, . . . ,k+ 1, for
each of j = i+1, . . . ,2k+1 for which the ( j,k+ i)-entry
is nonzero, add row i to row j.

1 0 0 0 0 0 0 /0
0 0 0 0 1 0 0 /0
0 0 0 0 0 1 0 /0
0 0 0 0 0 0 1 /0
0 1 0 0 0 0 0 /0
0 0 1 0 0 0 0 /0
0 0 0 1 0 0 0 /0
/0 /0 /0 /0 /0 /0 /0 ∗


We now have a block diagonal matrix in which the top
left block is a (2k+ 1)× (2k+ 1) matrix with nonzero
determinant (it results from reordering the rows of the
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identity matrix), the bottom right block is Mn−2k−1,k,
and the other two blocks are zero. We conclude that

det(Mn,k)≡ det(Mn−2k−1,k) (mod 2),

proving the desired congruence.

To prove the desired result, we must now check that
F0,k,F1,k are odd and F2,k, . . . ,F2k,k are even. For n =
0, . . . ,k+ 1, the matrix Mn,k consists of all ones, so its
determinant is 1 if n = 0,1 and 0 otherwise. (Alter-
natively, we have Fn,k = n! for n = 0, . . . ,k + 1, since
every permutation of {1, . . . ,n} is k-limited.) For n =
k+2, . . . ,2k, observe that rows k and k+1 of Mn,k both
consist of all ones, so det(Mn,k) = 0 as desired.

Third solution: (by Tom Belulovich) Define Mn,k as
in the second solution. We prove det(Mn,k) is odd for
n ≡ 0,1 (mod 2k+ 1) and even otherwise, by directly
determining whether or not Mn,k is invertible as a matrix
over the field of two elements.

Let ri denote row i of Mn,k. We first check that if n ≡
2, . . . ,2k (mod 2k+ 1), then Mn,k is not invertible. In
this case, we can find integers 0 ≤ a < b ≤ k such that
n+a+b≡ 0 (mod 2k+1). Put j = (n+a+b)/(2k+
1). We can then write the all-ones vector both as

j−1

∑
i=0

rk+1−a+(2k+1)i

and as

j−1

∑
i=0

rk+1−b+(2k+1)i.

Hence Mn,k is not invertible.

We next check that if n ≡ 0,1 (mod 2k+1), then Mn,k
is invertible. Suppose that a1, . . . ,an are scalars such
that a1r1 + · · ·+ anrn is the zero vector. The m-th co-
ordinate of this vector equals am−k + · · ·+am+k, where
we regard ai as zero if i /∈ {1, . . . ,n}. By comparing
consecutive coordinates, we obtain

am−k = am+k+1 (1≤ m < n).

In particular, the ai repeat with period 2k+ 1. Taking
m = 1, . . . ,k further yields that

ak+2 = · · ·= a2k+1 = 0

while taking m = n− k, . . . ,n−1 yields

an−2k = · · ·= an−1−k = 0.

For n≡ 0 (mod 2k+1), the latter can be rewritten as

a1 = · · ·= ak = 0

whereas for n≡ 1 (mod 2k+1), it can be rewritten as

a2 = · · ·= ak+1 = 0.
In either case, since we also have

a1 + · · ·+a2k+1 = 0

from the (k+1)-st coordinate, we deduce that all of the
ai must be zero, and so Mn,k must be invertible.

Remark: The matrices Mn,k are examples of banded
matrices, which occur frequently in numerical appli-
cations of linear algebra. They are also examples of
Toeplitz matrices.


