The 70th William Lowell Putnam Mathematical Competition
 Saturday, December 5, 2009

A1 Let f be a real-valued function on the plane such that for every square $A B C D$ in the plane, $f(A)+f(B)+f(C)+$ $f(D)=0$. Does it follow that $f(P)=0$ for all points P in the plane?

A2 Functions f, g, h are differentiable on some open interval around 0 and satisfy the equations and initial conditions

$$
\begin{array}{ll}
f^{\prime}=2 f^{2} g h+\frac{1}{g h}, & f(0)=1 \\
g^{\prime}=f g^{2} h+\frac{4}{f h}, & g(0)=1 \\
h^{\prime}=3 f g h^{2}+\frac{1}{f g}, & h(0)=1
\end{array}
$$

Find an explicit formula for $f(x)$, valid in some open interval around 0.

A3 Let d_{n} be the determinant of the $n \times n$ matrix whose entries, from left to right and then from top to bottom, are $\cos 1, \cos 2, \ldots, \cos n^{2}$. (For example,

$$
d_{3}=\left|\begin{array}{ccc}
\cos 1 & \cos 2 & \cos 3 \\
\cos 4 & \cos 5 & \cos 6 \\
\cos 7 & \cos 8 & \cos 9
\end{array}\right| .
$$

The argument of cos is always in radians, not degrees.) Evaluate $\lim _{n \rightarrow \infty} d_{n}$.

A4 Let S be a set of rational numbers such that
(a) $0 \in S$;
(b) If $x \in S$ then $x+1 \in S$ and $x-1 \in S$; and
(c) If $x \in S$ and $x \notin\{0,1\}$, then $\frac{1}{x(x-1)} \in S$.

Must S contain all rational numbers?
A5 Is there a finite abelian group G such that the product of the orders of all its elements is 2^{2009} ?

A6 Let $f:[0,1]^{2} \rightarrow \mathbb{R}$ be a continuous function on the closed unit square such that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are continuous on the interior $(0,1)^{2}$. Let $a=\int_{0}^{1} f(0, y) d y$, $b=\int_{0}^{1} f(1, y) d y, c=\int_{0}^{1} f(x, 0) d x, d=\int_{0}^{1} f(x, 1) d x$. Prove or disprove: There must be a point $\left(x_{0}, y_{0}\right)$ in $(0,1)^{2}$ such that

$$
\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)=b-a \quad \text { and } \quad \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)=d-c .
$$

B1 Show that every positive rational number can be written as a quotient of products of factorials of (not necessarily distinct) primes. For example,

$$
\frac{10}{9}=\frac{2!\cdot 5!}{3!\cdot 3!\cdot 3!}
$$

B2 A game involves jumping to the right on the real number line. If a and b are real numbers and $b>a$, the cost of jumping from a to b is $b^{3}-a b^{2}$. For what real numbers c can one travel from 0 to 1 in a finite number of jumps with total cost exactly c ?

B3 Call a subset S of $\{1,2, \ldots, n\}$ mediocre if it has the following property: Whenever a and b are elements of S whose average is an integer, that average is also an element of S. Let $A(n)$ be the number of mediocre subsets of $\{1,2, \ldots, n\}$. [For instance, every subset of $\{1,2,3\}$ except $\{1,3\}$ is mediocre, so $A(3)=7$.] Find all positive integers n such that $A(n+2)-2 A(n+1)+A(n)=$ 1.

B4 Say that a polynomial with real coefficients in two variables, x, y, is balanced if the average value of the polynomial on each circle centered at the origin is 0 . The balanced polynomials of degree at most 2009 form a vector space V over \mathbb{R}. Find the dimension of V.

B5 Let $f:(1, \infty) \rightarrow \mathbb{R}$ be a differentiable function such that

$$
f^{\prime}(x)=\frac{x^{2}-f(x)^{2}}{x^{2}\left(f(x)^{2}+1\right)} \quad \text { for all } x>1
$$

Prove that $\lim _{x \rightarrow \infty} f(x)=\infty$.
B6 Prove that for every positive integer n, there is a sequence of integers $a_{0}, a_{1}, \ldots, a_{2009}$ with $a_{0}=0$ and $a_{2009}=n$ such that each term after a_{0} is either an earlier term plus 2^{k} for some nonnegative integer k, or of the form $b \bmod c$ for some earlier positive terms b and c. [Here $b \bmod c$ denotes the remainder when b is divided by c, so $0 \leq(b \bmod c)<c$.]

