The 71st William Lowell Putnam Mathematical Competition Saturday, December 4, 2010

- A1 Given a positive integer *n*, what is the largest *k* such that the numbers 1, 2, ..., n can be put into *k* boxes so that the sum of the numbers in each box is the same? [When n = 8, the example $\{1, 2, 3, 6\}, \{4, 8\}, \{5, 7\}$ shows that the largest *k* is *at least* 3.]
- A2 Find all differentiable functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f'(x) = \frac{f(x+n) - f(x)}{n}$$

for all real numbers x and all positive integers n.

A3 Suppose that the function $h : \mathbb{R}^2 \to \mathbb{R}$ has continuous partial derivatives and satisfies the equation

$$h(x,y) = a\frac{\partial h}{\partial x}(x,y) + b\frac{\partial h}{\partial y}(x,y)$$

for some constants *a*,*b*. Prove that if there is a constant *M* such that $|h(x,y)| \le M$ for all $(x,y) \in \mathbb{R}^2$, then *h* is identically zero.

- A4 Prove that for each positive integer *n*, the number $10^{10^{10^n}} + 10^{10^n} + 10^n 1$ is not prime.
- A5 Let G be a group, with operation *. Suppose that
 - (i) G is a subset of ℝ³ (but * need not be related to addition of vectors);
 - (ii) For each $\mathbf{a}, \mathbf{b} \in G$, either $\mathbf{a} \times \mathbf{b} = \mathbf{a} * \mathbf{b}$ or $\mathbf{a} \times \mathbf{b} = 0$ (or both), where \times is the usual cross product in \mathbb{R}^3 .

Prove that $\mathbf{a} \times \mathbf{b} = 0$ for all $\mathbf{a}, \mathbf{b} \in G$.

A6 Let $f:[0,\infty) \to \mathbb{R}$ be a strictly decreasing continuous function such that $\lim_{x\to\infty} f(x) = 0$. Prove that $\int_0^\infty \frac{f(x) - f(x+1)}{f(x)} dx$ diverges.

B1 Is there an infinite sequence of real numbers a_1, a_2, a_3, \ldots such that

$$a_1^m + a_2^m + a_3^m + \dots = m$$

for every positive integer *m*?

- B2 Given that *A*, *B*, and *C* are noncollinear points in the plane with integer coordinates such that the distances *AB*, *AC*, and *BC* are integers, what is the smallest possible value of *AB*?
- B3 There are 2010 boxes labeled $B_1, B_2, \ldots, B_{2010}$, and 2010*n* balls have been distributed among them, for some positive integer *n*. You may redistribute the balls by a sequence of moves, each of which consists of choosing an *i* and moving *exactly i* balls from box B_i into any one other box. For which values of *n* is it possible to reach the distribution with exactly *n* balls in each box, regardless of the initial distribution of balls?
- B4 Find all pairs of polynomials p(x) and q(x) with real coefficients for which

$$p(x)q(x+1) - p(x+1)q(x) = 1.$$

- B5 Is there a strictly increasing function $f : \mathbb{R} \to \mathbb{R}$ such that f'(x) = f(f(x)) for all *x*?
- B6 Let *A* be an $n \times n$ matrix of real numbers for some $n \ge 1$. For each positive integer *k*, let $A^{[k]}$ be the matrix obtained by raising each entry to the *k*th power. Show that if $A^k = A^{[k]}$ for k = 1, 2, ..., n+1, then $A^k = A^{[k]}$ for all $k \ge 1$.