The 71st William Lowell Putnam Mathematical Competition
 Saturday, December 4, 2010

A1 Given a positive integer n, what is the largest k such that the numbers $1,2, \ldots, n$ can be put into k boxes so that the sum of the numbers in each box is the same? [When $n=8$, the example $\{1,2,3,6\},\{4,8\},\{5,7\}$ shows that the largest k is at least 3.]

A2 Find all differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f^{\prime}(x)=\frac{f(x+n)-f(x)}{n}
$$

for all real numbers x and all positive integers n.
A3 Suppose that the function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous partial derivatives and satisfies the equation

$$
h(x, y)=a \frac{\partial h}{\partial x}(x, y)+b \frac{\partial h}{\partial y}(x, y)
$$

for some constants a, b. Prove that if there is a constant M such that $|h(x, y)| \leq M$ for all $(x, y) \in \mathbb{R}^{2}$, then h is identically zero.

A4 Prove that for each positive integer n, the number $10^{10^{10^{n}}}+10^{10^{n}}+10^{n}-1$ is not prime.

A5 Let G be a group, with operation $*$. Suppose that
(i) G is a subset of \mathbb{R}^{3} (but $*$ need not be related to addition of vectors);
(ii) For each $\mathbf{a}, \mathbf{b} \in G$, either $\mathbf{a} \times \mathbf{b}=\mathbf{a} * \mathbf{b}$ or $\mathbf{a} \times \mathbf{b}=0$ (or both), where \times is the usual cross product in \mathbb{R}^{3}.

Prove that $\mathbf{a} \times \mathbf{b}=0$ for all $\mathbf{a}, \mathbf{b} \in G$.
A6 Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a strictly decreasing continuous function such that $\lim _{x \rightarrow \infty} f(x)=0$. Prove that $\int_{0}^{\infty} \frac{f(x)-f(x+1)}{f(x)} d x$ diverges.

B1 Is there an infinite sequence of real numbers $a_{1}, a_{2}, a_{3}, \ldots$ such that

$$
a_{1}^{m}+a_{2}^{m}+a_{3}^{m}+\cdots=m
$$

for every positive integer m ?
B2 Given that A, B, and C are noncollinear points in the plane with integer coordinates such that the distances $A B, A C$, and $B C$ are integers, what is the smallest possible value of $A B$?

B3 There are 2010 boxes labeled $B_{1}, B_{2}, \ldots, B_{2010}$, and $2010 n$ balls have been distributed among them, for some positive integer n. You may redistribute the balls by a sequence of moves, each of which consists of choosing an i and moving exactly i balls from box B_{i} into any one other box. For which values of n is it possible to reach the distribution with exactly n balls in each box, regardless of the initial distribution of balls?

B4 Find all pairs of polynomials $p(x)$ and $q(x)$ with real coefficients for which

$$
p(x) q(x+1)-p(x+1) q(x)=1 .
$$

B5 Is there a strictly increasing function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}(x)=f(f(x))$ for all x ?

B6 Let A be an $n \times n$ matrix of real numbers for some $n \geq$ 1. For each positive integer k, let $A^{[k]}$ be the matrix obtained by raising each entry to the k th power. Show that if $A^{k}=A^{[k]}$ for $k=1,2, \ldots, n+1$, then $A^{k}=A^{[k]}$ for all $k \geq 1$.

