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A-1 The largestsuchkis | | =
is achieved by the partition

{1,n},{2,n—1},...;

for n odd, it is achieved by the partition

{n},{l,n—1},{2,n—-2},....

One way to see that this is optimal is to note that the
common sum can never be less than n, since n itself
belongs to one of the boxes. This implies that k < (1 +

-+n)/n= (n+1)/2. Another argument is that if k >
(n+1)/2, then there would have to be two boxes with
one number each (by the pigeonhole principle), but such
boxes could not have the same sum.

[5]. For neven, this value

Remark. A much subtler question would be to find
the smallest k (as a function of n) for which no such
arrangement exists.

A-2 The only such functions are those of the form f(x) =
cx +d for some real numbers c,d (for which the prop-
erty is obviously satisfied). To see this, suppose that f
has the desired property. Then for any x € R,

2f'(x) = f(x+2) — f(x
= (fx+2) = fx+ 1)+ (fx+1) = f(x))
=f(x+1)+ f(x).
Consequently, f/(x+1) = f'(x).
Define the function g : R — R by g(x) = f(x+1) —
f(x), and put ¢ = g(0), d = f(0). For all x € R,

gx) = f(x+1)— f'(x) =0, so g(x) = c identically,
and f'(x) = f(x+1)— f(x) =g(x) =c,s0 f(x) =cx+d
identically as desired.

A-3 If a = b =0, then the desired result holds trivially, so
we assume that at least one of a,b is nonzero. Pick
any point (ag,bo) € R?, and let L be the line given by
the parametric equation L() = (ag,bo) + (a,b)t for t €
R. By the chain rule and the given equation, we have
4(hoL)=hoL. If we write f =hoL:R — R, then
f(¢) = f(z) for all £. It follows that f(r) = Ce' for some
constant C. Since |f(z)| < M for all ¢, we must have
C = 0. It follows that h(ag,bo) = 0; since (ap,bp) was
an arbitrary point,  is identically 0 over all of R.

A—4 Put
N=10""" 410" 410" — 1.

Write n = 2™k with m a nonnegative integer and k a
positive odd integer. For any nonnegative integer j,

102" = (=1)/  (mod 10" +1).

Since 10" > n > 2™ > m+ 1, 10" is divisible by 2" and
hence by 2t!, and similarly 10'%" is divisible by 2!"
and hence by 2!, Tt follows that

N=1+1+(=1)4(=1)=0 (mod 10*" +1).

Since N > 10'"" > 10" +1 > 10%" + 1, it follows that N
is composite.

A-5 We start with three lemmas.

Lemma 1. If x,y € G are nonzero orthogonal vectors, then
X *X Is parallel to y.

Proof. Putz=xxy # 0, so that x,y, and Z = x*y are nonzero
and mutually orthogonal. Then w =x Xz # 0, so W =X*Z is
nonzero and orthogonal to x and z. However, if (x+x) Xy # 0,
then w = x* (Xxy) = (X*X) xy = (X*X) X y is also orthogonal
to y, a contradiction. O

Lemma 2. Ifx € G is nonzero, and there exists y € G nonzero
and orthogonal to X, then xxx = (.

Proof. Lemma 1 implies that x xx is parallel to both y and
X Xy, S0 it must be zero. O

Lemma 3. Ifx,y € G commute, then x X y = Q.

Proof. If x x 'y # 0, then y X x is nonzero and distinct from
x xy. Consequently, xxy=xxXyandyxx =y XX #xxy. [

We proceed now to the proof. Assume by way of con-
tradiction that there exist a,b € G with a x b # 0. Put
c=axb =axb, so that a,b,c are nonzero and lin-
early independent. Let e be the identity element of G.
Since e commutes with a,b,¢, by Lemma 3 we have
exa=exb=exc=0. Sincea,b,cspanR3, exx=0
forallx € R3, soe=0.

Since b, ¢, and b x ¢ = b * ¢ are nonzero and mutually
orthogonal, Lemma 2 implies

bxb=cxc=(bxc)x(bxc)=0=e.

Hence b ¢ = cxb, contradicting Lemma 3 because b x
¢ # 0. The desired result follows.

A-6 First solution. Note that the hypotheses on f imply
that f(x) > 0 for all x € [0,+o0), so the integrand is a
continuous function of f and the integral makes sense.
Rewrite the integral as

I8 (1 - f%_)l)) d"’




and suppose by way of contradiction that it converges
to a finite limit L. For n > 0, define the Lebesgue mea-
surable set

fletnt1) _
flx+n)

Then L > ¥r° o 5(1 — u(l,)), so the latter sum con-
verges. In particular, there exists a nonnegative integer
N for which Y»_ (1 — u(1,)) < 1; the intersection

1=Uh=0.1- (0.1~ 1)
n=N

n=N

L, ={xe0,1]:1— <1/2}.

then has positive Lebesgue measure.

By Taylor’s theorem with remainder, for ¢ € [0,1/2],

flog(lft)<t+ﬁ sup {1}
T 20y LI=1)?
=r+27 <21

For each nonnegative integer n > N, we then have

o [ (1)
1
Y/ (1- L) ax
flx+i)
( fx+i+1) ) .
fx+1i)
n—1
> = ————d
2L / x+l+l *
1 nl flx+i)
= log———=1]d
2/(2 Cratrity )
1 / f erN
2
For each x € I, logf(x+ N)/f(x+n) is a strictly
increasing unbounded function of n. By the mono-
tone convergence theorem, the integral [,log(f(x+
N)/f(x+n))dx grows without bound as n — +oo, a
contradiction. Thus the original integral diverges, as
desired.
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Remark. This solution is motivated by the commonly-
used fact that an infinite product (14 x)(1+x2)---
converges absolutely if and only if the sum x; +x, + - - -
converges absolutely. The additional measure-theoretic
argument at the beginning is needed because one cannot
bound —log(1—7) by a fixed multiple of # uniformly for
allr €[0,1).

Greg Martin suggests a variant solution that avoids use
of Lebesgue measure. Note first that if f(y) > 2f(y +
1), then either f(y) > v2f(y+1/2) or f(y+1/2) >
V2f(y+1), and in either case we deduce that

PR = fat) L Y
Ll/z f(x) a >2<1 ﬂ)>7'

/f x—H

If there exist arbitrarily large values of y for which
F) >2f(y+1), we deduce that the original integral is
greater than any multiple of 1/7, and so diverges. Oth-
erwise, for x large we may argue that

fO) =) 3 S

() 5 8 P+ 1)

as in the above solution, and again get divergence using
a telescoping sum.

Second solution. (Communicated by Paul Allen.) Let
b > a be nonnegative integers. Then

flx+k)— flx+k+1)
Z/ flx+k) dx
U k) — fx+k+ 1)
~Jo k; fx+k) da
Pl f(x+k) — fx+k+1)
Zﬁkq fGx+a)

:/1 Ff(x+a)—f(x+b)
flx+a)

Now since f(x) — 0, given a, we can choose an in-
teger I(a) > a for which f(I(a)) < f(a+1)/2; then
frt+a)—f(x+i(a)) f(l(a))

% > 1 _J"(Tfl) > 1/2 for all x € [0,1].
Thus if we define a sequence of integers a, by ag = 0,
ant1 = Il(ay), then

dx

dx.

S B [ - fa )
e e %A ¢

o fx)
>HZ;)/01(1/2)dx

and the final sum clearly diverges.

Third solution. (By Joshua Rosenberg, communicated
by Catalin Zara.) If the original integral converges, then
on one hand the integrand (f(x) — f(x+1))/f(x) =1—
Ff(x+1)/f(x) cannot tend to 1 as x — co. On the other
hand, for any a > 0,

f(a—H)
0< f
1
f(a/ us
- 1 (@ = s+ 1) ax
/ f x—|—1) dx

and the last expression tends to 0 as a — co. Hence by
the squeeze theorem, f(a+1)/f(a) = 0 as a — o, a
contradiction.



B-1 First solution. No such sequence exists. If it did, then

the Cauchy-Schwartz inequality would imply

8=(at+az+-)(al+a3+-)
(a1—|—az—|— )2 97

contradiction.

Second solution.
Suppose that such a sequence exists. If a% €

all k, then aj: < ai for all k, and so

(Communicated by Catalin Zara.)
[0,1] for

4:a‘1‘—|—a‘2‘+~~- Sa%—l—a%—i—--- =2,
contradiction. There thus exists a positive integer k for
which a,% > 1. However, in this case, for m large, a,%m >

2m and so a3 +a3" + -+ # 2m.

Third solution. We generalize the second solution to
show that for any positive integer k, it is impossible for
a sequence aj,day, ... of complex numbers to satisfy the
given conditions in case the series a% + a5 + -+ con-
verges absolutely. This includes the original problem
by taking k = 2, in which case the series a% + a% 4+
consists of nonnegative real numbers and so converges
absolutely if it converges at all.

Since the sum Y |a;|¥ converges by hypothesis, we
can find a positive integer n such that ¥° . | a;[¥ < 1.
For each positive integer d, we then have

kd — Z af

i=

< Z |a;* < 1.
i=n+1

We thus cannot have |aj|,...,|a,| < 1, or else the sum
Y-, a* would be bounded in absolute value by n inde-
pendently of d. But if we put r = max{|ay|,...,|an|} >
1, we obtain another contradiction because for any € >
0,

limsup(r —
d—oo

For instance, this follows from applying the root test to
the rational function

n

fr-L(Ee)

which has a pole within the circle |z| < r~'/%. (An ele-
mentary proof is also possible.)

Fourth solution. (Communicated by Noam Elkies.)
Since Y a,% = 2, for each positive integer k we have
a; <2 and so a} < 2a;, with equality only for a7 €
{0,2}. Thus to have ¥, af = 4, there must be a single
index k for which a,% =2, and the other a; must all equal
0. But then Y a,%m = 2" =£ 2m for any positive integer
m>2.

B-2

Remark. Manjul Bhargava points out it is easy to con-
struct sequences of complex numbers with the desired
property if we drop the condition of absolute conver-
gence. Here is an inductive construction (of which sev-
eral variants are possible). Forn=1,2,... and z € C,
define the finite sequence

1 oo
Snz= (Zesz/”:j—O,...,n—l>.

This sequence has the property that for any positive in-
teger j, the sum of the j-th powers of the terms of s, ;
equals 1/7/ if jis divisible by n and 0 otherwise. More-
over, any partial sum of j-th powers is bounded in ab-
solute value by n/|z|/.

The desired sequence will be constructed as follows.
Suppose that we have a finite sequence which has the
correct sum of j-th powers for j = 1,...,m. (For in-
stance, for m = 1, we may start with the singleton
sequence 1.) We may then extend it to a new se-
quence which has the correct sum of j-th powers for
j=1,...,m+1, by appending k copies of s,,,1, for
suitable choices of a positive integer k and a complex
number z with |z| < m~2. This last restriction ensures
that the resulting infinite sequence aj,ay, . .. is such that
for each positive integer m, the series a' +- a3 +--- is
convergent (though not absolutely convergent). Its par-
tial sums include a subsequence equal to the constant
value m, so the sum of the series must equal m as de-
sired.

The smallest distance is 3, achieved by A = (0,0), B =
(3,0), C = (0,4). To check this, it suffices to check
that AB cannot equal 1 or 2. (It cannot equal 0 because
if two of the points were to coincide, the three points
would be collinear.)

The triangle inequality implies that |AC — BC| < AB,
with equality if and only if A, B, C are collinear. If AB =
1, we may assume without loss of generality that A =
(0,0), B=(1,0). To avoid collinearity, we must have
AC = BC, but this forces C = (1/2,y) for some y € R,
a contradiction. (One can also treat this case by scaling
by a factor of 2 to reduce to the case AB = 2, treated in
the next paragraph.)

If AB = 2, then we may assume without loss of gener-
ality that A = (0,0),B = (2,0). The triangle inequal-
ity implies |JAC — BC| € {0,1}. Also, for C = (x,y),
AC? = x* +y* and BC? = (2 —x)? +y? have the same
parity; it follows that AC = BC. Hence ¢ = (1,y) for
some y € R, so y? and y*> + 1 = BC? are consecutive
perfect squares. This can only happen for y = 0, but
then A, B, C are collinear, a contradiction again.

Remark. Manjul Bhargava points out that more gener-
ally, a Heronian triangle (a triangle with integer sides
and rational area) cannot have a side of length 1 or 2
(and again it is enough to treat the case of length 2).
The original problem follows from this because a tri-
angle whose vertices have integer coordinates has area



B-3

equal to half an integer (by Pick’s formula or the ex-
plicit formula for the area as a determinant).

It is possible if and only if n > 1005. Since

L4 ee e 12009 — 2009 x 2010

=2010 x 1004.5,

for n < 1004, we can start with an initial distribution
in which each box B; starts with at most i — 1 balls (so
in particular B is empty). From such a distribution, no
moves are possible, so we cannot reach the desired final
distribution.

Suppose now that n > 1005. By the pigeonhole prin-
ciple, at any time, there exists at least one index i for
which the box B; contains at least i balls. We will de-
scribe any such index as being eligible. The following
sequence of operations then has the desired effect.

(a) Find the largest eligible index i. If i = 1, proceed
to (b). Otherwise, move i balls from B; to B, then
repeat (a).

(b) At this point, only the index i = 1 can be eligi-
ble (so it must be). Find the largest index j for
which B; is nonempty. If j =1, proceed to (c).
Otherwise, move 1 ball from By to Bj; in case this
makes j eligible, move j balls from B; to B;. Then

repeat (b).
(c) At this point, all of the balls are in B;. For i =
2,...,2010, move one ball from B; to B; n times.

After these operations, we have the desired distribution.

B—4 First solution. The pairs (p,q) satisfying the given

equation are those of the form p(x) = ax+ b,q(x) =
cx+d for a,b,c,d € R such that bc —ad = 1. We will
see later that these indeed give solutions.

Suppose p and g satisfy the given equation; note that
neither p nor g can be identically zero. By subtracting
the equations

p(xX)g(x+1) = px+1)q(x)

=1
px—1)g(x) = p(x)g(x—1) =1,

we obtain the equation

p)(g(x+1) +glx—1)) = g(x)(p(x+1) + p(x —1)).

The original equation implies that p(x) and g(x) have
no common nonconstant factor, so p(x) divides p(x+
1)+ p(x—1). Since each of p(x+1) and p(x— 1) has
the same degree and leading coefficient as p, we must
have

px+1)+px—1)=2p(x).
If we define the polynomials r(x) = p(x+ 1) — p(x),
s(x) = g(x+1) — g(x), we have r(x+ 1) = r(x), and
similarly s(x+ 1) = s(x). Put

a=r(0),b=p(0),c =5(0),d = q(0).

4

Then r(x) = a,s(x) = ¢ for all x € Z, and hence identi-
cally; consequently, p(x) = ax+b,q(x) = cx+d for all
X € Z, and hence identically. For p and ¢ of this form,

px)gq(x+1) = p(x+1)q(x) = be — ad,

so we get a solution if and only if bc —ad =1, as
claimed.

Second solution. (Communicated by Catalin Zara.)
Again, note that p and ¢ must be nonzero. Write

p(x) =po+pix+---+ pux"
q(x) =qo+qix+---+gux"

with p,,,qn # 0, so that m = deg(p),n = deg(q). It
is enough to derive a contradiction assuming that
max{m,n} > 1, the remaining cases being treated as in
the first solution.

PutR(x) = p(x)g(x+1)— p(x+1)q(x). Sincem+n>2
by assumption, the coefficient of ¥~ in R(x) must
vanish. By easy algebra, this coefficient equals (m —
1) Pmqn, SO We must have m =n > 1.

For k= 1,...,2m — 2, the coefficient of x* in R(x) is

S ((kj—l) B (ki)) (pidj = piai)

and must vanish. For k = 2m — 2, the only summand is
for (laj) = (m_ lvm)7 SO Pm—19m = Pm9m—1-

Suppose now that 4 > 1 and that p;q; = p;q; is known to
vanish whenever j > i > h. (By the previous paragraph,
we initially have this forh=m—1.) Take k=m+h—2
and note that the conditions i+ j > h, j < m force i >
h — 1. Using the hypothesis, we see that the only possi-
ble nonzero contribution to the coefficient of x* in R(x)
is from (i,j) = (h— 1,m). Hence py_1qm = Pmqn-1;
since pm,qm # 0, this implies p,_1q; = pjqn—1 when-
ever j >h—1.

By descending induction, we deduce that p;q; = p;q;
whenever j > i > 0. Consequently, p(x) and g(x) are
scalar multiples of each other, forcing R(x) = 0, a con-
tradiction.

Third solution. (Communicated by David Feldman.)
As in the second solution, we note that there are no so-
lutions where m = deg(p),n = deg(q) are distinct and
m+n > 2. Suppose p,q form a solution withm =n > 2.
The desired identity asserts that the matrix

(p(X) plx+ 1))

q(x) q(x+1)

has determinant 1. This condition is preserved by re-
placing g(x) with ¢(x) —#p(x) for any real number ¢. In
particular, we can choose ¢ so that deg(g(x) —tp(x)) <
m; we then obtain a contradiction.



B-5 First solution. The answer is no. Suppose otherwise.

For the condition to make sense, f must be differen-
tiable. Since f is strictly increasing, we must have
f'(x) >0 for all x. Also, the function f’(x) is strictly
increasing: if y > x then f'(y) = f(f()) > f(f(x)) =
f'(x). In particular, f'(y) > 0 forall y € R.

For any xo > —1, if f(xo) = b and f'(xo) = a > 0, then
f(x) > a for x > xq and thus f(x) > a(x —xg) + b for
x > xo. Then either b < xp or a = f'(x9) = f(f(x0)) =
f(b) > a(b—xp) +b. In the latter case, b < a(xp +
1)/(a+1) <xp+1. We conclude in either case that
f(xo) <xo+1forall xg > —1.

It must then be the case that f(f(x)) = f'(x) <1 for
all x, since otherwise f(x) > x+ 1 for large x. Now
by the above reasoning, if f(0) = by and f(0) =
ap > 0, then f(x) > apx + by for x > 0. Thus for
x> max{0,—bo/ao}, we have f(x) >0 and f(f(x)) >
apx+ bo. But then f(f(x)) > 1 for sufficiently large x,
a contradiction.

Second solution. (Communicated by Catalin Zara.)
Suppose such a function exists. Since f is strictly
increasing and differentiable, so is fo f = f. In
particular, f is twice differentiable; also, f”(x) =
F(f(x))f(x) is the product of two strictly increasing
nonnegative functions, so it is also strictly increasing
and nonnegative. In particular, we can choose o > 0
and M € R such that f”(x) > 4a for all x > M. Then
forallx > M,

F(x) > f(M)+ f' (M) (x— M) +20a(x— M)*.
In particular, for some M’ > M, we have f(x) > ox? for

allx > M.

Pick 7 > 0 so that «72 > M’. Then for x > T, f(x) >
M’ and so f'(x) = f(f(x)) > af(x)*. Now

1 1 B 2T f/(t) 2T .
7l jupd ), e

however, as T — oo, the left side of this inequality tends
to 0 while the right side tends to 4o, a contradiction.

Third solution. (Communicated by Noam Elkies.)
Since f is strictly increasing, for some yp, we can de-
fine the inverse function g(y) of f for y > yp. Then

x = g(f(x)), and we may differentiate to find that
1= (f(x))f(x) = g (f(x))f(f(x)). It follows that
g (y) = 1/f(y) for y > yo; since g takes arbitrarily large
values, the integral [(”dy/f(y) must diverge. One then
gets a contradiction from any reasonable lower bound
on f(y) for y large, e.g., the bound f(x) > ax? from the
second solution. (One can also start with a linear lower
bound f(x) > Bx, then use the integral expression for g
to deduce that g(x) < ylogx, which in turn forces f(x)
to grow exponentially.)

B-6 For any polynomial p(x), let [p(x)]A denote the n x n

matrix obtained by replacing each entry A;; of A by
p(A;); thus AR = KA. Let P(x) = ¥ + a1 +
---+ag denote the characteristic polynomial of A. By
the Cayley-Hamilton theorem,
0=A-P(A)

=An+1+a,,,]A"+---—|—a0A

— Al+1] _~_an7]A[n] + .. _|_a0Am

= [xp(x)]A.

Thus each entry of A is a root of the polynomial xp(x).
Now suppose m > n+ 1. Then

0= [ 17"P(x)]A
= Alm+] +an_1A[’”] + ... +a0A[m+1*”]

since each entry of A is a root of ¥"*!="P(x). On the
other hand,

0 :Am—H—n P(A)
:Am+1 _,'_an_lAm_,'_“._’_aoAer]fn.

Therefore if AK = AKX for m+1—n < k < m, then
At = Alm+1] The desired result follows by induction
on m.

Remark. David Feldman points out that the result is
best possible in the following sense: there exist ex-
amples of n x n matrices A for which A% = Al for
k=1,...,nbut A1 £ Al+1],



