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A–1 The largest such k is b n+1
2 c= d

n
2e. For n even, this value

is achieved by the partition

{1,n},{2,n−1}, . . . ;

for n odd, it is achieved by the partition

{n},{1,n−1},{2,n−2}, . . . .

One way to see that this is optimal is to note that the
common sum can never be less than n, since n itself
belongs to one of the boxes. This implies that k ≤ (1+
· · ·+n)/n = (n+1)/2. Another argument is that if k >
(n+ 1)/2, then there would have to be two boxes with
one number each (by the pigeonhole principle), but such
boxes could not have the same sum.

Remark. A much subtler question would be to find
the smallest k (as a function of n) for which no such
arrangement exists.

A–2 The only such functions are those of the form f (x) =
cx+ d for some real numbers c,d (for which the prop-
erty is obviously satisfied). To see this, suppose that f
has the desired property. Then for any x ∈ R,

2 f ′(x) = f (x+2)− f (x)
= ( f (x+2)− f (x+1))+( f (x+1)− f (x))

= f ′(x+1)+ f ′(x).

Consequently, f ′(x+1) = f ′(x).

Define the function g : R→ R by g(x) = f (x + 1)−
f (x), and put c = g(0), d = f (0). For all x ∈ R,
g′(x) = f ′(x+ 1)− f ′(x) = 0, so g(x) = c identically,
and f ′(x)= f (x+1)− f (x)= g(x)= c, so f (x)= cx+d
identically as desired.

A–3 If a = b = 0, then the desired result holds trivially, so
we assume that at least one of a,b is nonzero. Pick
any point (a0,b0) ∈ R2, and let L be the line given by
the parametric equation L(t) = (a0,b0)+(a,b)t for t ∈
R. By the chain rule and the given equation, we have
d
dt (h ◦L) = h ◦L. If we write f = h ◦L : R→ R, then
f ′(t) = f (t) for all t. It follows that f (t) =Cet for some
constant C. Since | f (t)| ≤ M for all t, we must have
C = 0. It follows that h(a0,b0) = 0; since (a0,b0) was
an arbitrary point, h is identically 0 over all of R2.

A–4 Put

N = 101010n

+1010n
+10n−1.

Write n = 2mk with m a nonnegative integer and k a
positive odd integer. For any nonnegative integer j,

102m j ≡ (−1) j (mod 102m
+1).

Since 10n ≥ n≥ 2m ≥ m+1, 10n is divisible by 2n and
hence by 2m+1, and similarly 1010n

is divisible by 210n

and hence by 2m+1. It follows that

N ≡ 1+1+(−1)+(−1)≡ 0 (mod 102m
+1).

Since N ≥ 1010n
> 10n+1≥ 102m

+1, it follows that N
is composite.

A–5 We start with three lemmas.

Lemma 1. If x,y ∈ G are nonzero orthogonal vectors, then
x∗x is parallel to y.

Proof. Put z= x×y 6= 0, so that x,y, and z= x∗y are nonzero
and mutually orthogonal. Then w = x× z 6= 0, so w = x∗ z is
nonzero and orthogonal to x and z. However, if (x∗x)×y 6= 0,
then w= x∗(x∗y) = (x∗x)∗y= (x∗x)×y is also orthogonal
to y, a contradiction.

Lemma 2. If x∈G is nonzero, and there exists y∈G nonzero
and orthogonal to x, then x∗x = 0.

Proof. Lemma 1 implies that x ∗ x is parallel to both y and
x×y, so it must be zero.

Lemma 3. If x,y ∈ G commute, then x×y = 0.

Proof. If x× y 6= 0, then y× x is nonzero and distinct from
x×y. Consequently, x∗y= x×y and y∗x= y×x 6= x∗y.

We proceed now to the proof. Assume by way of con-
tradiction that there exist a,b ∈ G with a×b 6= 0. Put
c = a× b = a ∗ b, so that a,b,c are nonzero and lin-
early independent. Let e be the identity element of G.
Since e commutes with a,b,c, by Lemma 3 we have
e×a= e×b= e×c= 0. Since a,b,c span R3, e×x= 0
for all x ∈ R3, so e = 0.

Since b,c, and b× c = b ∗ c are nonzero and mutually
orthogonal, Lemma 2 implies

b∗b = c∗ c = (b∗ c)∗ (b∗ c) = 0 = e.

Hence b∗c = c∗b, contradicting Lemma 3 because b×
c 6= 0. The desired result follows.

A–6 First solution. Note that the hypotheses on f imply
that f (x) > 0 for all x ∈ [0,+∞), so the integrand is a
continuous function of f and the integral makes sense.
Rewrite the integral as∫

∞

0

(
1− f (x+1)

f (x)

)
dx,
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and suppose by way of contradiction that it converges
to a finite limit L. For n≥ 0, define the Lebesgue mea-
surable set

In = {x ∈ [0,1] : 1− f (x+n+1)
f (x+n)

≤ 1/2}.

Then L ≥ ∑
∞
n=0

1
2 (1− µ(In)), so the latter sum con-

verges. In particular, there exists a nonnegative integer
N for which ∑

∞
n=N(1−µ(In))< 1; the intersection

I =
∞⋃

n=N

In = [0,1]−
∞⋂

n=N

([0,1]− In)

then has positive Lebesgue measure.

By Taylor’s theorem with remainder, for t ∈ [0,1/2],

− log(1− t)≤ t +
t2

2
sup

t∈[0,1/2]

{
1

(1− t)2

}
= t +2t2 ≤ 2t.

For each nonnegative integer n≥ N, we then have

L≥
∫ n

N

(
1− f (x+1)

f (x)

)
dx

=
n−1

∑
i=N

∫ 1

0

(
1− f (x+ i+1)

f (x+ i)

)
dx

≥
n−1

∑
i=N

∫
I

(
1− f (x+ i+1)

f (x+ i)

)
dx

≥ 1
2

n−1

∑
i=N

∫
I
log

f (x+ i)
f (x+ i+1)

dx

=
1
2

∫
I

(
n−1

∑
i=N

log
f (x+ i)

f (x+ i+1)

)
dx

=
1
2

∫
I
log

f (x+N)

f (x+n)
dx.

For each x ∈ I, log f (x + N)/ f (x + n) is a strictly
increasing unbounded function of n. By the mono-
tone convergence theorem, the integral

∫
I log( f (x +

N)/ f (x + n))dx grows without bound as n → +∞, a
contradiction. Thus the original integral diverges, as
desired.

Remark. This solution is motivated by the commonly-
used fact that an infinite product (1 + x1)(1 + x2) · · ·
converges absolutely if and only if the sum x1+x2+ · · ·
converges absolutely. The additional measure-theoretic
argument at the beginning is needed because one cannot
bound− log(1−t) by a fixed multiple of t uniformly for
all t ∈ [0,1).

Greg Martin suggests a variant solution that avoids use
of Lebesgue measure. Note first that if f (y) > 2 f (y+
1), then either f (y) >

√
2 f (y+ 1/2) or f (y+ 1/2) >√

2 f (y+1), and in either case we deduce that∫ y+1/2

y−1/2

f (x)− f (x+1)
f (x)

dx >
1
2

(
1− 1√

2

)
>

1
7
.

If there exist arbitrarily large values of y for which
f (y)> 2 f (y+1), we deduce that the original integral is
greater than any multiple of 1/7, and so diverges. Oth-
erwise, for x large we may argue that

f (x)− f (x+1)
f (x)

>
3
5

log
f (x)

f (x+1)

as in the above solution, and again get divergence using
a telescoping sum.

Second solution. (Communicated by Paul Allen.) Let
b > a be nonnegative integers. Then

∫ b

a

f (x)− f (x+1)
f (x)

dx =
b−1

∑
k=a

∫ 1

0

f (x+ k)− f (x+ k+1)
f (x+ k)

dx

=
∫ 1

0

b−1

∑
k=a

f (x+ k)− f (x+ k+1)
f (x+ k)

dx

≥
∫ 1

0

b−1

∑
k=a

f (x+ k)− f (x+ k+1)
f (x+a)

dx

=
∫ 1

0

f (x+a)− f (x+b)
f (x+a)

dx.

Now since f (x) → 0, given a, we can choose an in-
teger l(a) > a for which f (l(a)) < f (a + 1)/2; then
f (x+a)− f (x+l(a))

f (x+a) ≥ 1− f (l(a))
f (a+1) > 1/2 for all x ∈ [0,1].

Thus if we define a sequence of integers an by a0 = 0,
an+1 = l(an), then∫
∞

0

f (x)− f (x+1)
f (x)

dx =
∞

∑
n=0

∫ an+1

an

f (x)− f (x+1)
f (x)

dx

>
∞

∑
n=0

∫ 1

0
(1/2)dx,

and the final sum clearly diverges.

Third solution. (By Joshua Rosenberg, communicated
by Catalin Zara.) If the original integral converges, then
on one hand the integrand ( f (x)− f (x+1))/ f (x) = 1−
f (x+1)/ f (x) cannot tend to 1 as x→ ∞. On the other
hand, for any a≥ 0,

0 <
f (a+1)

f (a)

<
1

f (a)

∫ a+1

a
f (x)dx

=
1

f (a)

∫
∞

a
( f (x)− f (x+1))dx

≤
∫

∞

a

f (x)− f (x+1)
f (x)

dx,

and the last expression tends to 0 as a→ ∞. Hence by
the squeeze theorem, f (a+ 1)/ f (a)→ 0 as a→ ∞, a
contradiction.
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B–1 First solution. No such sequence exists. If it did, then
the Cauchy-Schwartz inequality would imply

8 = (a2
1 +a2

2 + · · ·)(a4
1 +a4

2 + · · ·)
≥ (a3

1 +a3
2 + · · ·)2 = 9,

contradiction.

Second solution. (Communicated by Catalin Zara.)
Suppose that such a sequence exists. If a2

k ∈ [0,1] for
all k, then a4

k ≤ a2
k for all k, and so

4 = a4
1 +a4

2 + · · · ≤ a2
1 +a2

2 + · · ·= 2,

contradiction. There thus exists a positive integer k for
which a2

k ≥ 1. However, in this case, for m large, a2m
k >

2m and so a2m
1 +a2m

2 + · · · 6= 2m.

Third solution. We generalize the second solution to
show that for any positive integer k, it is impossible for
a sequence a1,a2, . . . of complex numbers to satisfy the
given conditions in case the series ak

1 + ak
2 + · · · con-

verges absolutely. This includes the original problem
by taking k = 2, in which case the series a2

1 + a2
2 + · · ·

consists of nonnegative real numbers and so converges
absolutely if it converges at all.

Since the sum ∑
∞
i=1 |ai|k converges by hypothesis, we

can find a positive integer n such that ∑
∞
i=n+1 |ai|k < 1.

For each positive integer d, we then have∣∣∣∣∣kd−
n

∑
i=1

akd
i

∣∣∣∣∣≤ ∞

∑
i=n+1

|ai|kd < 1.

We thus cannot have |a1|, . . . , |an| ≤ 1, or else the sum
∑

n
i=1 akd

i would be bounded in absolute value by n inde-
pendently of d. But if we put r = max{|a1|, . . . , |an|}>
1, we obtain another contradiction because for any ε >
0,

limsup
d→∞

(r− ε)−kd

∣∣∣∣∣ n

∑
i=1

akd
i

∣∣∣∣∣> 0.

For instance, this follows from applying the root test to
the rational function

n

∑
i=1

1
1−ak

i z
=

∞

∑
d=0

(
n

∑
i=1

akd
i

)
zd ,

which has a pole within the circle |z| ≤ r−1/k. (An ele-
mentary proof is also possible.)

Fourth solution. (Communicated by Noam Elkies.)
Since ∑k a2

k = 2, for each positive integer k we have
a2

k ≤ 2 and so a4
k ≤ 2a2

k , with equality only for a2
k ∈

{0,2}. Thus to have ∑k a4
k = 4, there must be a single

index k for which a2
k = 2, and the other ak must all equal

0. But then ∑k a2m
k = 2m 6= 2m for any positive integer

m > 2.

Remark. Manjul Bhargava points out it is easy to con-
struct sequences of complex numbers with the desired
property if we drop the condition of absolute conver-
gence. Here is an inductive construction (of which sev-
eral variants are possible). For n = 1,2, . . . and z ∈ C,
define the finite sequence

sn,z =

(
1
z

e2πi j/n : j = 0, . . . ,n−1
)
.

This sequence has the property that for any positive in-
teger j, the sum of the j-th powers of the terms of sn,z
equals 1/z j if j is divisible by n and 0 otherwise. More-
over, any partial sum of j-th powers is bounded in ab-
solute value by n/|z| j.
The desired sequence will be constructed as follows.
Suppose that we have a finite sequence which has the
correct sum of j-th powers for j = 1, . . . ,m. (For in-
stance, for m = 1, we may start with the singleton
sequence 1.) We may then extend it to a new se-
quence which has the correct sum of j-th powers for
j = 1, . . . ,m+ 1, by appending k copies of sm+1,z for
suitable choices of a positive integer k and a complex
number z with |z| < m−2. This last restriction ensures
that the resulting infinite sequence a1,a2, . . . is such that
for each positive integer m, the series am

1 + am
2 + · · · is

convergent (though not absolutely convergent). Its par-
tial sums include a subsequence equal to the constant
value m, so the sum of the series must equal m as de-
sired.

B–2 The smallest distance is 3, achieved by A = (0,0), B =
(3,0), C = (0,4). To check this, it suffices to check
that AB cannot equal 1 or 2. (It cannot equal 0 because
if two of the points were to coincide, the three points
would be collinear.)

The triangle inequality implies that |AC− BC| ≤ AB,
with equality if and only if A,B,C are collinear. If AB =
1, we may assume without loss of generality that A =
(0,0), B = (1,0). To avoid collinearity, we must have
AC = BC, but this forces C = (1/2,y) for some y ∈ R,
a contradiction. (One can also treat this case by scaling
by a factor of 2 to reduce to the case AB = 2, treated in
the next paragraph.)

If AB = 2, then we may assume without loss of gener-
ality that A = (0,0),B = (2,0). The triangle inequal-
ity implies |AC− BC| ∈ {0,1}. Also, for C = (x,y),
AC2 = x2 + y2 and BC2 = (2− x)2 + y2 have the same
parity; it follows that AC = BC. Hence c = (1,y) for
some y ∈ R, so y2 and y2 + 1 = BC2 are consecutive
perfect squares. This can only happen for y = 0, but
then A,B,C are collinear, a contradiction again.

Remark. Manjul Bhargava points out that more gener-
ally, a Heronian triangle (a triangle with integer sides
and rational area) cannot have a side of length 1 or 2
(and again it is enough to treat the case of length 2).
The original problem follows from this because a tri-
angle whose vertices have integer coordinates has area
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equal to half an integer (by Pick’s formula or the ex-
plicit formula for the area as a determinant).

B–3 It is possible if and only if n≥ 1005. Since

1+ · · ·+2009 =
2009×2010

2
= 2010×1004.5,

for n ≤ 1004, we can start with an initial distribution
in which each box Bi starts with at most i− 1 balls (so
in particular B1 is empty). From such a distribution, no
moves are possible, so we cannot reach the desired final
distribution.

Suppose now that n ≥ 1005. By the pigeonhole prin-
ciple, at any time, there exists at least one index i for
which the box Bi contains at least i balls. We will de-
scribe any such index as being eligible. The following
sequence of operations then has the desired effect.

(a) Find the largest eligible index i. If i = 1, proceed
to (b). Otherwise, move i balls from Bi to B1, then
repeat (a).

(b) At this point, only the index i = 1 can be eligi-
ble (so it must be). Find the largest index j for
which B j is nonempty. If j = 1, proceed to (c).
Otherwise, move 1 ball from B1 to B j; in case this
makes j eligible, move j balls from B j to B1. Then
repeat (b).

(c) At this point, all of the balls are in B1. For i =
2, . . . ,2010, move one ball from B1 to Bi n times.

After these operations, we have the desired distribution.

B–4 First solution. The pairs (p,q) satisfying the given
equation are those of the form p(x) = ax + b,q(x) =
cx+ d for a,b,c,d ∈ R such that bc− ad = 1. We will
see later that these indeed give solutions.

Suppose p and q satisfy the given equation; note that
neither p nor q can be identically zero. By subtracting
the equations

p(x)q(x+1)− p(x+1)q(x) = 1
p(x−1)q(x)− p(x)q(x−1) = 1,

we obtain the equation

p(x)(q(x+1)+q(x−1)) = q(x)(p(x+1)+ p(x−1)).

The original equation implies that p(x) and q(x) have
no common nonconstant factor, so p(x) divides p(x+
1)+ p(x−1). Since each of p(x+1) and p(x−1) has
the same degree and leading coefficient as p, we must
have

p(x+1)+ p(x−1) = 2p(x).

If we define the polynomials r(x) = p(x + 1)− p(x),
s(x) = q(x + 1)− q(x), we have r(x + 1) = r(x), and
similarly s(x+1) = s(x). Put

a = r(0),b = p(0),c = s(0),d = q(0).

Then r(x) = a,s(x) = c for all x ∈ Z, and hence identi-
cally; consequently, p(x) = ax+b,q(x) = cx+d for all
x ∈ Z, and hence identically. For p and q of this form,

p(x)q(x+1)− p(x+1)q(x) = bc−ad,

so we get a solution if and only if bc− ad = 1, as
claimed.

Second solution. (Communicated by Catalin Zara.)
Again, note that p and q must be nonzero. Write

p(x) = p0 + p1x+ · · ·+ pmxm

q(x) = q0 +q1x+ · · ·+qnxn

with pm,qn 6= 0, so that m = deg(p),n = deg(q). It
is enough to derive a contradiction assuming that
max{m,n}> 1, the remaining cases being treated as in
the first solution.

Put R(x)= p(x)q(x+1)− p(x+1)q(x). Since m+n≥ 2
by assumption, the coefficient of xm+n−1 in R(x) must
vanish. By easy algebra, this coefficient equals (m−
n)pmqn, so we must have m = n > 1.

For k = 1, . . . ,2m−2, the coefficient of xk in R(x) is

∑
i+ j>k, j>i

((
j

k− i

)
−
(

i
k− j

))
(piq j− p jqi)

and must vanish. For k = 2m−2, the only summand is
for (i, j) = (m−1,m), so pm−1qm = pmqm−1.

Suppose now that h≥ 1 and that piq j = p jqi is known to
vanish whenever j > i≥ h. (By the previous paragraph,
we initially have this for h = m−1.) Take k = m+h−2
and note that the conditions i+ j > h, j ≤ m force i ≥
h−1. Using the hypothesis, we see that the only possi-
ble nonzero contribution to the coefficient of xk in R(x)
is from (i, j) = (h− 1,m). Hence ph−1qm = pmqh−1;
since pm,qm 6= 0, this implies ph−1q j = p jqh−1 when-
ever j > h−1.

By descending induction, we deduce that piq j = p jqi
whenever j > i ≥ 0. Consequently, p(x) and q(x) are
scalar multiples of each other, forcing R(x) = 0, a con-
tradiction.

Third solution. (Communicated by David Feldman.)
As in the second solution, we note that there are no so-
lutions where m = deg(p),n = deg(q) are distinct and
m+n≥ 2. Suppose p,q form a solution with m= n≥ 2.
The desired identity asserts that the matrix(

p(x) p(x+1)
q(x) q(x+1)

)
has determinant 1. This condition is preserved by re-
placing q(x) with q(x)− t p(x) for any real number t. In
particular, we can choose t so that deg(q(x)− t p(x))<
m; we then obtain a contradiction.
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B–5 First solution. The answer is no. Suppose otherwise.
For the condition to make sense, f must be differen-
tiable. Since f is strictly increasing, we must have
f ′(x) ≥ 0 for all x. Also, the function f ′(x) is strictly
increasing: if y > x then f ′(y) = f ( f (y)) > f ( f (x)) =
f ′(x). In particular, f ′(y)> 0 for all y ∈ R.

For any x0 ≥−1, if f (x0) = b and f ′(x0) = a > 0, then
f ′(x) > a for x > x0 and thus f (x) ≥ a(x− x0)+ b for
x ≥ x0. Then either b < x0 or a = f ′(x0) = f ( f (x0)) =
f (b) ≥ a(b− x0) + b. In the latter case, b ≤ a(x0 +
1)/(a+ 1) ≤ x0 + 1. We conclude in either case that
f (x0)≤ x0 +1 for all x0 ≥−1.

It must then be the case that f ( f (x)) = f ′(x) ≤ 1 for
all x, since otherwise f (x) > x + 1 for large x. Now
by the above reasoning, if f (0) = b0 and f ′(0) =
a0 > 0, then f (x) > a0x + b0 for x > 0. Thus for
x > max{0,−b0/a0}, we have f (x)> 0 and f ( f (x))>
a0x+b0. But then f ( f (x)) > 1 for sufficiently large x,
a contradiction.

Second solution. (Communicated by Catalin Zara.)
Suppose such a function exists. Since f is strictly
increasing and differentiable, so is f ◦ f = f ′. In
particular, f is twice differentiable; also, f ′′(x) =
f ′( f (x)) f ′(x) is the product of two strictly increasing
nonnegative functions, so it is also strictly increasing
and nonnegative. In particular, we can choose α > 0
and M ∈ R such that f ′′(x) > 4α for all x ≥ M. Then
for all x≥M,

f (x)≥ f (M)+ f ′(M)(x−M)+2α(x−M)2.

In particular, for some M′ > M, we have f (x)≥ αx2 for
all x≥M′.

Pick T > 0 so that αT 2 > M′. Then for x ≥ T , f (x) >
M′ and so f ′(x) = f ( f (x))≥ α f (x)2. Now

1
f (T )

− 1
f (2T )

=
∫ 2T

T

f ′(t)
f (t)2 dt ≥

∫ 2T

T
α dt;

however, as T →∞, the left side of this inequality tends
to 0 while the right side tends to +∞, a contradiction.

Third solution. (Communicated by Noam Elkies.)
Since f is strictly increasing, for some y0, we can de-
fine the inverse function g(y) of f for y ≥ y0. Then

x = g( f (x)), and we may differentiate to find that
1 = g′( f (x)) f ′(x) = g′( f (x)) f ( f (x)). It follows that
g′(y) = 1/ f (y) for y≥ y0; since g takes arbitrarily large
values, the integral

∫
∞

y0
dy/ f (y) must diverge. One then

gets a contradiction from any reasonable lower bound
on f (y) for y large, e.g., the bound f (x)≥ αx2 from the
second solution. (One can also start with a linear lower
bound f (x)≥ βx, then use the integral expression for g
to deduce that g(x) ≤ γ logx, which in turn forces f (x)
to grow exponentially.)

B–6 For any polynomial p(x), let [p(x)]A denote the n× n
matrix obtained by replacing each entry Ai j of A by
p(Ai j); thus A[k] = [xk]A. Let P(x) = xn + an−1xn−1 +
· · ·+ a0 denote the characteristic polynomial of A. By
the Cayley-Hamilton theorem,

0 = A ·P(A)
= An+1 +an−1An + · · ·+a0A

= A[n+1]+an−1A[n]+ · · ·+a0A[1]

= [xp(x)]A.

Thus each entry of A is a root of the polynomial xp(x).

Now suppose m≥ n+1. Then

0 = [xm+1−nP(x)]A

= A[m+1]+an−1A[m]+ · · ·+a0A[m+1−n]

since each entry of A is a root of xm+1−nP(x). On the
other hand,

0 = Am+1−n ·P(A)
= Am+1 +an−1Am + · · ·+a0Am+1−n.

Therefore if Ak = A[k] for m + 1− n ≤ k ≤ m, then
Am+1 = A[m+1]. The desired result follows by induction
on m.

Remark. David Feldman points out that the result is
best possible in the following sense: there exist ex-
amples of n× n matrices A for which Ak = A[k] for
k = 1, . . . ,n but An+1 6= A[n+1].


