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A1l We claim that the set of points with 0 <x <2011 and

0 <y <2011 that cannot be the last point of a growing
spiral are as follows: (0,y) for 0 <y <2011; (x,0) and
(x,1) for 1 < x <2011; (x,2) for 2 < x < 2011; and
(x,3) for 3 <x <2011. This gives a total of

20124-2011+2011+20104-2009 = 10053

excluded points.

The complement of this set is the set of (x,y) with 0 <
x <y, along with (x,y) with x >y > 4. Clearly the
former set is achievable as P in a growing spiral, while
a point (x,y) in the latter set is Py in a growing spiral
with successive lengths 1,2, 3, x+1,x+2, and x+y—
1.

We now need to rule out the other cases. Write x; <
y1 < x2 <yp < ... for the lengths of the line segments
in the spiral in order, so that P; = (x1,0), P» = (x1,y1),
P; = (x; —x2,y1), and so forth. Any point beyond Py
has x-coordinate of the form x; —xp +--- + (—1)""x,
for n > 1; if n is odd, we can write this as x; + (—x, +
x3)+ -+ (—xp—1 +x,) > 0, while if n is even, we can
write this as (x; —x2) + -+ + (x,—1 —x) < 0. Thus no
point beyond Py can have x-coordinate 0, and we have
ruled out (0,y) for 0 <y <2011.

Next we claim that any point beyond P3 must have
y-coordinate either negative or > 4. Indeed, each
such point has y-coordinate of the form y; —y, +---+
(—1)""1y, for n > 2, which we can write as (y; —y>) +
o+ 4 (Yyu—1 —yu) < 0if nis even, and

Vid (=y24y3) A (Y1) >y +2>4

if n > 3 is odd. Thus to rule out the rest of the forbidden
points, it suffices to check that they cannot be P> or P;
for any growing spiral. But none of them can be P3 =
(x1 —x2,y1) since x; — x; < 0, and none of them can
be P, = (x1,y1) since they all have y-coordinate at most
equal to their x-coordinate.

A2 For m > 1, write
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Then S} = 1 = 1/a; and a quick calculation yields
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form>2,sincea; = (b;j+2)/bj_ for j > 2. It follows
that S, =Y, 1/(a;---ay).

A3

Now if (b;) is bounded above by B, then bfﬁ < BL_;Z
for all j, and so 3/2 > S, > 3/2(1 — (%)m) Since

BL;Z < 1, it follows that the sequence (S,,) converges to

S=3/2.
We claim that (¢,L) = (—1,2/x) works. Write f(r) =

foﬂ/ * X sinxdx. Then
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while since sinx > 2x/7 for x < /2,
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It follows that
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Now by integration by parts, we have

/2 1 /2 1
/ x" cosxdx = —/ ¥ Hsinxdx = flr+ )
0 r+1Jo
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r+1

Thus setting ¢ = —1 in the given limit yields

(r+1)f(r) 2

rose rfr+1) =@

i

as desired.

The answer is n odd. Let / denote the n x n identity
matrix, and let A denote the n x n matrix all of whose
entries are 1. If n is odd, then the matrix A — I satisfies
the conditions of the problem: the dot product of any
row with itself is n — 1, and the dot product of any two
distinct rows is n — 2.

Conversely, suppose 7 is even, and suppose that the ma-
trix M satisfied the conditions of the problem. Consider
all matrices and vectors mod 2. Since the dot product
of a row with itself is equal mod 2 to the sum of the en-
tries of the row, we have Mv = O where v is the vector
(1,1,...,1), and so M is singular. On the other hand,
MMT = A —T; since

(A—1)2=A>-24+1=(n-2)A+I1=1,

we have (detM)? = det(A —I) = 1 and detM = 1, con-
tradicting the fact that M is singular.



A5 (by Abhinav Kumar) Define G : R — R by G(x) =

Jo &(t)dt. By assumption, G is a strictly increasing,
thrice continuously differentiable function. It is also
bounded: for x > 1, we have

0<G(x) —G(1) = /lxg(t)dt < /lxdt/tz _1,

and similarly, for x < —1, we have 0 > G(x) — G(—1) >
—1. It follows that the image of G is some open interval
(A,B) and that G~! : (A, B) — R is also thrice continu-
ously differentiable.

Define H : (A,B) x (A,B) — R by H(x,y) =
F(G'(x),G"!(y)); it is twice continuously dif-
ferentiable since F and G~! are. By our assumptions
about F,

H OH _OF oy iy !
+<9y = 8x(G (x),G(y) g(G1(x))
IF 1 oo L
+ 5, (670,67 0) s =0

Therefore H is constant along any line parallel to the
vector (1,1), or equivalently, H(x,y) depends only on
x—y. We may thus write H(x,y) = h(x —y) for some
function & on (—(B—A),B—A), and we then have
F(x,y) = h(G(x) — G(y)). Since F(u,u) =0, we have
h(0) = 0. Also, h is twice continuously differentiable
(since it can be written as h(x) = H((A+B+x)/2,(A+
B —x)/2)), so |I'| is bounded on the closed interval
[-(B—A)/2,(B—A)/2], say by M.

Given xi,...,X,+1 € R for some n > 2, the numbers
G(x1),...,G(xy41) all belong to (A,B), so we can
choose indices i and j so that |G(x;) — G(x;)| < (B—
A)/n < (B—A)/2. By the mean value theorem,

B—A
|F (xi,x7)| = [A(G(xi) = Glx)))| < M——,
so the claim holds with C = M (B —A).
A6 Choose some ordering hy,...,h, of the elements of G

with i) = e. Define an n X n matrix M by settting M;; =
1/k if hj = h;g for some g € {g1,...,8} and M;; =0
otherwise. Let v denote the column vector (1,0,...,0).
The probability that the product of m random elements
of {g1,...,8r} equals h; can then be interpreted as the
i-th component of the vector M™v.

Let G denote the dual group of G, i.e., the group
of complex-valued characters of G. Let é € G de-
note the trivial character. For each y € G, the vector
vy = (x(hi))", is an eigenvector of M with eigenvalue
Ay = (x(g1)+---+ x(gk))/k. In particular, ve is the
all-ones vector and A; = 1. Put

b=max{|Ay|: x € G—{e}};

we show that b € (0, 1) as follows. First suppose b = 0;
then

k n
1= Y A= ) X xle) =7

xeG i=lyeé

because er(G)X(gi) equals n for i = 1 and O oth-
erwise. However, this contradicts the hypothesis that
{g1,--.,gx} is not all of G. Hence b > 0. Next suppose
b =1, and choose x € G — {¢} with [1,| = 1. Since
each of x(g1),-.-,x(gk) is a complex number of norm
1, the triangle inequality forces them all to be equal.
Since x(g1) = x(e) = 1, x must map each of gy,...,gx
to 1, but this is impossible because y is a nontrivial
character and gi,...,g; form a set of generators of G.
This contradiction yields b < 1.

Since v= 1Y _~v, and Mv, = A;v,, we have
1

e
M _ 1 A’m
V— —vp = - Z Vi
xeG-{¢}

Since the vectors v, are pairwise orthogonal, the limit
we are interested in can be written as

S 1
lHm —— (M™v — —v;) - (M™v — —vp).

m—soo0 h2m n n

and then rewritten as

1 , )
e Y P =#{xeG: Ay =b}
reG—{¢e}

By construction, this last quantity is nonzero and finite.

Remark. It is easy to see that the result fails if we do
not assume g = e: take G =7/2Z,n=1,and g; = 1.

Remark. Harm Derksen points out that a similar ar-
gument applies even if G is not assumed to be abelian,
provided that the operator g; + - - - + g in the group al-
gebra Z[G] is normal, i.e., it commutes with the op-
erator gfl + -4 gk’I. This includes the cases where
the set {g1,...,8x} is closed under taking inverses and
where it is a union of conjugacy classes (which in turn
includes the case of G abelian).

Remark. The matrix M used above has nonnegative
entries with row sums equal to 1 (i.e., it corresponds to
a Markov chain), and there exists a positive integer m
such that M™ has positive entries. For any such matrix,
the Perron-Frobenius theorem implies that the sequence
of vectors M™v converges to a limit w, and there exists
b €10,1) such that

n

1
limsup o Z((va — w)i)2

m—yoo i=1

is nonzero and finite. (The intended interpretation in
case b = 0 is that M™v = w for all large m.) However,
the limit need not exist in general.
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Since the rational numbers are dense in the reals, we
can find positive integers a, b such that

3¢ < b < 4e

hk " a  hk’
By multiplying @ and b by a suitably large positive in-
teger, we can also ensure that 3a% > b. We then have

£ b b
—<—<-———=Vd+b—a
hk 3a  a?2+b+a

and

b b £
_ < —<2—.
\/a2+b+a_261< hk

We may then take m = k*(a® +b),n = h*a®.

Va+b—a=

Only the primes 2 and 5 appear seven or more times.
The fact that these primes appear is demonstrated by
the examples

(2,5,2),(2,5,3),(2,7,5),(2,11,5)

and their reversals.

It remains to show that if either / = 3 or ¢ is a prime
greater than 5, then ¢ occurs at most six times as an
element of a triple in S. Note that (p,q,r) € S if and
only if g> — 4pr = a* for some integer a; in particular,
since 4pr > 16, this forces g > 5. In particular, ¢ is odd,
as then is ¢, and so ¢> =a> =1 (mod 8); consequently,
one of p,r must equal 2. If r = 2, then 8p = ¢*> —a®> =
(g +a)(g— a); since both factors are of the same sign
and their sum is the positive number 2¢, both factors are
positive. Since they are also both even, we have g+a €
{2,4,2p,4p} and so g € {2p+ 1,p+2}. Similarly, if
p =2, then g € {2r+ 1,r+2}. Consequently, ¢ occurs
at most twice as many times as there are prime numbers
in the list

2€+1,€+2,€_T17€—2.

For { =3,{—2 =1 is not prime. For £ > 7, the numbers
{—2.0,¢+2 cannot all be prime, since one of them is
always a nontrivial multiple of 3.

Remark. The above argument shows that the cases
listed for 5 are the only ones that can occur. By con-
trast, there are infinitely many cases where 2 occurs if
either the twin prime conjecture holds or there are in-
finitely many Sophie Germain primes (both of which
are expected to be true).

Yes, it follows that f is differentiable.

First solution. Note first that at 0, f/g and g are both
continuous, as then is their product f. If £(0) # 0, then
in some neighborhood of 0, f is either always positive
or always negative. We can thus choose € € {+1} so
that £ f is the composition of the differentiable function

B4

BS5

(fg)- (f/g) with the square root function. By the chain
rule, f is differentiable at 0.

If £(0) =0, then (f/g)(0) =0, so we have

(/) (©) = lim 19

=0 xg(x)

Since g is continuous at 0, we may multiply limits to
deduce that lim,_,o f(x)/x exists.

Second solution. Choose a neighborhood N of 0 on
which g(x) # 0. Define the following functions on N \

0(x)—f(0)g(0 (0)—f(0)g
{0}: Iy (x) = f(X)s(X)xf( )20). ha(x) = f(ﬂz;fg()());((x)%(xn
ha(x) = g(0)g(x); ha(x) = m. Then by assump-
tion, hy,hy, h3, hs all have limits as x — 0. On the other
hand,

f(x) = £(0)

X

= (h1(x) +ha(x)h3(x))ha(x),

SX)=f(0)

< exists, as desired.

and it follows that lim,_.g

Number the games 1,...,2011, and let A = (a ;) be the
2011 x 2011 matrix whose jk entry is 1 if player k wins
game j and i = \/—1 if player k loses game j. Then
ayjaji is 1 if players h and k tie in game j; i if player &
wins and player k loses in game j; and —i if / loses and
k wins. It follows that T +iW = A’ A.

Now the determinant of A is unchanged if we subtract
the first row of A from each of the other rows, pro-
ducing a matrix whose rows, besides the first one, are
(1 —i) times a row of integers. Thus we can write
detA = (1 —i)?°1%(a + bi) for some integers a,b. But

then det(T +iW) = det(XTA) =2%2019(42 4 p?) is a non-
negative integer multiple of 2210, as desired.
Define the function
0 dx
)= /m T+ (1 + (422

For y > 0, in the range —1 < x <0, we have

(1+22) (14 (x+9)?) < A+ D)1+ (1+y)%) = 2" +4y+4

)
2 2 2
<2y +442(y"+1) <646y°.

We thus have the lower bound

1

f(Y)Zm;

the same bound is valid for y < 0 because f(y) = f(—y).

The original hypothesis can be written as

Z flai—aj) <An
ij=1

and thus implies that

n

1
—— < 6An.
Z 1+(a,-—aj)2 = ban

i,j=1



By the Cauchy-Schwarz inequality, this implies

n

Y (1+(ai—a))*) > Bn®

i,j=1

for B=1/(6A).

Remark. One can also compute explicitly (using par-
tial fractions, Fourier transforms, or contour integra-

tion) that f(y) = 4%

Remark. Praveen Venkataramana points out that the
lower bound can be improved to Bn* as follows. For
eachzeZ,put Q.,={ie{l,....n}:a,€[z,z+1)}
and ¢, , =#Q,,. Then Y, q., = n and

1
>Z2qzn

€L

1

6An > B T
" Z 1+ (a;i—aj)?

i,j=1

If exactly k of the g, are nonzero, then } .y qin >

n? [k by Jensen’s inequality (or various other methods),
so we must have k > n/(6A). Then

n k
Y (4 (ai—aj)*) = n*+ Y max{0, (i —j| - 1)*}
ij=1 ij=1
K2 Skr k
w4 -

6 3 6 3

This is bounded below by Bn* for some B > 0.

In the opposite direction, one can weaken the initial up-
per bound to An*/3 and still derive a lower bound of
Bn?. The argument is similar.

B6 In order to interpret the problem statement, one must
choose a convention for the value of 0°; we will take it
to equal 1. (If one takes 0° to be 0, then the problem
fails for p = 3.)

First solution. By Wilson’s theorem,
Ki(p—1-K)!= (=D (p—1)!= (=" (mod p),

so we have a congruence of Laurent polynomials

1)k
Zk')g( Z _1_ )‘ (mod p)
71}77l (—x)*
=—x') x (mod p).
k=0

Replacing x with —1/x, we reduce the original problem
to showing that the polynomial

p=l k

g(x)=) -
= k!

over I, has at most (p — 1) /2 nonzero roots in IF,,. To
see this, write

h(x) =x —x+ g(x)

and note that by Wilson’s theorem again,

p—1 x" 1
—1+Z —xp_1—1+g(x).
If z € F, is such that g(z) = 0, then z # 0 because g(0) =

1. Therefore, z2~! =1, so h(z) = h'(z) = 0 and so z is
at least a double root of /. Since & is a polynomial of
degree p, there can be at most (p — 1)/2 zeroes of g in
F,, as desired.

Second solution. (By Noam Elkies) Define the polyno-
mial f over I, by

p—1
X) = Z kixk,
k=0

Put 7 = (p — 1)/2; the problem statement is that f has
at most ¢ roots modulo p. Suppose the contrary; since
f(0) = 1, this means that f(x) is nonzero for at most

t— 1 values of x € F},. Denote these values by x1, ..., X,
where by assumption m < ¢, and define the polynomial
Q over IF, by
m t—1
= H(x xm) = Z Opx
k=1 k=0
Then we can write
P(x) -1
flx 1—xf
)= 55—

where P(x) is some polynomial of degree at most m.
This means that the power series expansions of f(x) and
P(x)/Q(x) coincide modulo x”~!, so the coefficients of
x,...,x* Vin f(x)Q(x) vanish. In other words, the
product of the square matrix

A= ((+j+1) L

with the nonzero column vector (Q;_1,...,Qp) is zero.
However, by the following lemma, det(A) is nonzero
modulo p, a contradiction.

Lemma 1. For any nonnegative integer m and any integer n,
det((i+j+n))}—o = Hk' (k+n)!

Proof. Define the (m+1) x (m+1) matrix A,, , by (Amn)ij =
(’ﬂ ), the desired result is then that det(A,, ,) = 1. Note that

i=0
mn)(i-1)j 1> 0;

that is, A;, ,—1 can be obtained from A,, , by elementary row
operations. Therefore, det(A,, ) = det(A,, ,—1), so det(A,,,)
depends only on m. The claim now follows by observing that
Agp is the 1 x 1 matrix with entry 1 and that A,, | has the

. 1 *
block tat . O
ock representation (0 A, 10)



Remark. Elkies has given a more detailed http://mathoverflow.net/questions/82648.
discussion of the origins of this solution in
the theory of orthogonal polynomials; see



