Solutions to the 72nd William Lowell Putnam Mathematical Competition Saturday, December 3, 2011

Kiran Kedlaya and Lenny Ng

A1 We claim that the set of points with $0 \leq x \leq 2011$ and $0 \leq y \leq 2011$ that cannot be the last point of a growing spiral are as follows: $(0, y)$ for $0 \leq y \leq 2011 ;(x, 0)$ and $(x, 1)$ for $1 \leq x \leq 2011 ;(x, 2)$ for $2 \leq x \leq 2011$; and $(x, 3)$ for $3 \leq x \leq 2011$. This gives a total of

$$
2012+2011+2011+2010+2009=10053
$$

excluded points.
The complement of this set is the set of (x, y) with $0<$ $x<y$, along with (x, y) with $x \geq y \geq 4$. Clearly the former set is achievable as P_{2} in a growing spiral, while a point (x, y) in the latter set is P_{6} in a growing spiral with successive lengths $1,2,3, x+1, x+2$, and $x+y-$ 1.

We now need to rule out the other cases. Write $x_{1}<$ $y_{1}<x_{2}<y_{2}<\ldots$ for the lengths of the line segments in the spiral in order, so that $P_{1}=\left(x_{1}, 0\right), P_{2}=\left(x_{1}, y_{1}\right)$, $P_{3}=\left(x_{1}-x_{2}, y_{1}\right)$, and so forth. Any point beyond P_{0} has x-coordinate of the form $x_{1}-x_{2}+\cdots+(-1)^{n-1} x_{n}$ for $n \geq 1$; if n is odd, we can write this as $x_{1}+\left(-x_{2}+\right.$ $\left.x_{3}\right)+\cdots+\left(-x_{n-1}+x_{n}\right)>0$, while if n is even, we can write this as $\left(x_{1}-x_{2}\right)+\cdots+\left(x_{n-1}-x_{n}\right)<0$. Thus no point beyond P_{0} can have x-coordinate 0 , and we have ruled out $(0, y)$ for $0 \leq y \leq 2011$.
Next we claim that any point beyond P_{3} must have y-coordinate either negative or ≥ 4. Indeed, each such point has y-coordinate of the form $y_{1}-y_{2}+\cdots+$ $(-1)^{n-1} y_{n}$ for $n \geq 2$, which we can write as $\left(y_{1}-y_{2}\right)+$ $\cdots+\left(y_{n-1}-y_{n}\right)<0$ if n is even, and
$y_{1}+\left(-y_{2}+y_{3}\right)+\cdots+\left(-y_{n-1}+y_{n}\right) \geq y_{1}+2 \geq 4$
if $n \geq 3$ is odd. Thus to rule out the rest of the forbidden points, it suffices to check that they cannot be P_{2} or P_{3} for any growing spiral. But none of them can be $P_{3}=$ $\left(x_{1}-x_{2}, y_{1}\right)$ since $x_{1}-x_{2}<0$, and none of them can be $P_{2}=\left(x_{1}, y_{1}\right)$ since they all have y-coordinate at most equal to their x-coordinate.

A2 For $m \geq 1$, write

$$
S_{m}=\frac{3}{2}\left(1-\frac{b_{1} \cdots b_{m}}{\left(b_{1}+2\right) \cdots\left(b_{m}+2\right)}\right) .
$$

Then $S_{1}=1=1 / a_{1}$ and a quick calculation yields

$$
S_{m}-S_{m-1}=\frac{b_{1} \cdots b_{m-1}}{\left(b_{2}+2\right) \cdots\left(b_{m}+2\right)}=\frac{1}{a_{1} \cdots a_{m}}
$$

for $m \geq 2$, since $a_{j}=\left(b_{j}+2\right) / b_{j-1}$ for $j \geq 2$. It follows that $S_{m}=\sum_{n=1}^{m} 1 /\left(a_{1} \cdots a_{n}\right)$.

Now if $\left(b_{j}\right)$ is bounded above by B, then $\frac{b_{j}}{b_{j}+2} \leq \frac{B}{B+2}$ for all j, and so $3 / 2>S_{m} \geq 3 / 2\left(1-\left(\frac{B}{B+2}\right)^{m}\right)$. Since $\frac{B}{B+2}<1$, it follows that the sequence $\left(S_{m}\right)$ converges to $S=3 / 2$.

A3 We claim that $(c, L)=(-1,2 / \pi)$ works. Write $f(r)=$ $\int_{0}^{\pi / 2} x^{r} \sin x d x$. Then

$$
f(r)<\int_{0}^{\pi / 2} x^{r} d x=\frac{(\pi / 2)^{r+1}}{r+1}
$$

while since $\sin x \geq 2 x / \pi$ for $x \leq \pi / 2$,

$$
f(r)>\int_{0}^{\pi / 2} \frac{2 x^{r+1}}{\pi} d x=\frac{(\pi / 2)^{r+1}}{r+2}
$$

It follows that

$$
\lim _{r \rightarrow \infty} r\left(\frac{2}{\pi}\right)^{r+1} f(r)=1
$$

whence
$\lim _{r \rightarrow \infty} \frac{f(r)}{f(r+1)}=\lim _{r \rightarrow \infty} \frac{r(2 / \pi)^{r+1} f(r)}{(r+1)(2 / \pi)^{r+2} f(r+1)} \cdot \frac{2(r+1)}{\pi r}=\frac{2}{\pi}$.
Now by integration by parts, we have

$$
\int_{0}^{\pi / 2} x^{r} \cos x d x=\frac{1}{r+1} \int_{0}^{\pi / 2} x^{r+1} \sin x d x=\frac{f(r+1)}{r+1} .
$$

Thus setting $c=-1$ in the given limit yields

$$
\lim _{r \rightarrow \infty} \frac{(r+1) f(r)}{r f(r+1)}=\frac{2}{\pi}
$$

as desired.
A4 The answer is n odd. Let I denote the $n \times n$ identity matrix, and let A denote the $n \times n$ matrix all of whose entries are 1 . If n is odd, then the matrix $A-I$ satisfies the conditions of the problem: the dot product of any row with itself is $n-1$, and the dot product of any two distinct rows is $n-2$.

Conversely, suppose n is even, and suppose that the matrix M satisfied the conditions of the problem. Consider all matrices and vectors mod 2 . Since the dot product of a row with itself is equal mod 2 to the sum of the entries of the row, we have $M v=0$ where v is the vector $(1,1, \ldots, 1)$, and so M is singular. On the other hand, $M M^{T}=A-I ;$ since

$$
(A-I)^{2}=A^{2}-2 A+I=(n-2) A+I=I
$$

we have $(\operatorname{det} M)^{2}=\operatorname{det}(A-I)=1$ and $\operatorname{det} M=1$, contradicting the fact that M is singular.

A5 (by Abhinav Kumar) Define $G: \mathbb{R} \rightarrow \mathbb{R}$ by $G(x)=$ $\int_{0}^{x} g(t) d t$. By assumption, G is a strictly increasing, thrice continuously differentiable function. It is also bounded: for $x>1$, we have

$$
0<G(x)-G(1)=\int_{1}^{x} g(t) d t \leq \int_{1}^{x} d t / t^{2}=1
$$

and similarly, for $x<-1$, we have $0>G(x)-G(-1) \geq$ -1 . It follows that the image of G is some open interval (A, B) and that $G^{-1}:(A, B) \rightarrow \mathbb{R}$ is also thrice continuously differentiable.
Define $H:(A, B) \times(A, B) \rightarrow \mathbb{R}$ by $H(x, y)=$ $F\left(G^{-1}(x), G^{-1}(y)\right) ; \quad$ it is twice continuously differentiable since F and G^{-1} are. By our assumptions about F,

$$
\begin{aligned}
\frac{\partial H}{\partial x}+\frac{\partial H}{\partial y}= & \frac{\partial F}{\partial x}\left(G^{-1}(x), G^{-1}(y)\right) \cdot \frac{1}{g\left(G^{-1}(x)\right)} \\
& +\frac{\partial F}{\partial y}\left(G^{-1}(x), G^{-1}(y)\right) \cdot \frac{1}{g\left(G^{-1}(y)\right)}=0 .
\end{aligned}
$$

Therefore H is constant along any line parallel to the vector $(1,1)$, or equivalently, $H(x, y)$ depends only on $x-y$. We may thus write $H(x, y)=h(x-y)$ for some function h on $(-(B-A), B-A)$, and we then have $F(x, y)=h(G(x)-G(y))$. Since $F(u, u)=0$, we have $h(0)=0$. Also, h is twice continuously differentiable (since it can be written as $h(x)=H((A+B+x) / 2,(A+$ $B-x) / 2)$), so $\left|h^{\prime}\right|$ is bounded on the closed interval $[-(B-A) / 2,(B-A) / 2]$, say by M.
Given $x_{1}, \ldots, x_{n+1} \in \mathbb{R}$ for some $n \geq 2$, the numbers $G\left(x_{1}\right), \ldots, G\left(x_{n+1}\right)$ all belong to (A, B), so we can choose indices i and j so that $\left|G\left(x_{i}\right)-G\left(x_{j}\right)\right| \leq(B-$ $A) / n \leq(B-A) / 2$. By the mean value theorem,

$$
\left|F\left(x_{i}, x_{j}\right)\right|=\left|h\left(G\left(x_{i}\right)-G\left(x_{j}\right)\right)\right| \leq M \frac{B-A}{n},
$$

so the claim holds with $C=M(B-A)$.
A6 Choose some ordering h_{1}, \ldots, h_{n} of the elements of G with $h_{1}=e$. Define an $n \times n$ matrix M by settting $M_{i j}=$ $1 / k$ if $h_{j}=h_{i} g$ for some $g \in\left\{g_{1}, \ldots, g_{k}\right\}$ and $M_{i j}=0$ otherwise. Let v denote the column vector $(1,0, \ldots, 0)$. The probability that the product of m random elements of $\left\{g_{1}, \ldots, g_{k}\right\}$ equals h_{i} can then be interpreted as the i-th component of the vector $M^{m} v$.
Let \hat{G} denote the dual group of G, i.e., the group of complex-valued characters of G. Let $\hat{e} \in \hat{G}$ denote the trivial character. For each $\chi \in \hat{G}$, the vector $v_{\chi}=\left(\chi\left(h_{i}\right)\right)_{i=1}^{n}$ is an eigenvector of M with eigenvalue $\lambda_{\chi}=\left(\chi\left(g_{1}\right)+\cdots+\chi\left(g_{k}\right)\right) / k$. In particular, $v_{\hat{e}}$ is the all-ones vector and $\lambda_{\hat{e}}=1$. Put

$$
b=\max \left\{\left|\lambda_{\chi}\right|: \chi \in \hat{G}-\{\hat{e}\}\right\}
$$

we show that $b \in(0,1)$ as follows. First suppose $b=0$; then

$$
1=\sum_{\chi \in \hat{G}} \lambda_{\chi}=\frac{1}{k} \sum_{i=1}^{k} \sum_{\chi \in \hat{G}} \chi\left(g_{i}\right)=\frac{n}{k}
$$

because $\sum_{\chi \in \hat{(G)}} \chi\left(g_{i}\right)$ equals n for $i=1$ and 0 otherwise. However, this contradicts the hypothesis that $\left\{g_{1}, \ldots, g_{k}\right\}$ is not all of G. Hence $b>0$. Next suppose $b=1$, and choose $\chi \in \hat{G}-\{\hat{e}\}$ with $\left|\lambda_{\chi}\right|=1$. Since each of $\chi\left(g_{1}\right), \ldots, \chi\left(g_{k}\right)$ is a complex number of norm 1 , the triangle inequality forces them all to be equal. Since $\chi\left(g_{1}\right)=\chi(e)=1, \chi$ must map each of g_{1}, \ldots, g_{k} to 1 , but this is impossible because χ is a nontrivial character and g_{1}, \ldots, g_{k} form a set of generators of G. This contradiction yields $b<1$.
Since $v=\frac{1}{n} \sum_{\chi \in \hat{G}} v_{\chi}$ and $M v_{\chi}=\lambda_{\chi} v_{\chi}$, we have

$$
M^{m} v-\frac{1}{n} v_{\hat{e}}=\frac{1}{n} \sum_{\chi \in \hat{G}-\{\hat{e}\}} \lambda_{\chi}^{m} v_{\chi}
$$

Since the vectors v_{χ} are pairwise orthogonal, the limit we are interested in can be written as

$$
\lim _{m \rightarrow \infty} \frac{1}{b^{2 m}}\left(M^{m} v-\frac{1}{n} v_{\hat{e}}\right) \cdot\left(M^{m} v-\frac{1}{n} v_{\hat{e}}\right) .
$$

and then rewritten as

$$
\lim _{m \rightarrow \infty} \frac{1}{b^{2 m}} \sum_{\chi \in \hat{G}-\{\hat{e}\}}\left|\lambda_{\chi}\right|^{2 m}=\#\left\{\chi \in \hat{G}:\left|\lambda_{\chi}\right|=b\right\} .
$$

By construction, this last quantity is nonzero and finite.
Remark. It is easy to see that the result fails if we do not assume $g_{1}=e$: take $G=\mathbb{Z} / 2 \mathbb{Z}, n=1$, and $g_{1}=1$.
Remark. Harm Derksen points out that a similar argument applies even if G is not assumed to be abelian, provided that the operator $g_{1}+\cdots+g_{k}$ in the group algebra $\mathbb{Z}[G]$ is normal, i.e., it commutes with the operator $g_{1}^{-1}+\cdots+g_{k}^{-1}$. This includes the cases where the set $\left\{g_{1}, \ldots, g_{k}\right\}$ is closed under taking inverses and where it is a union of conjugacy classes (which in turn includes the case of G abelian).
Remark. The matrix M used above has nonnegative entries with row sums equal to 1 (i.e., it corresponds to a Markov chain), and there exists a positive integer m such that M^{m} has positive entries. For any such matrix, the Perron-Frobenius theorem implies that the sequence of vectors $M^{m} v$ converges to a limit w, and there exists $b \in[0,1)$ such that

$$
\limsup _{m \rightarrow \infty} \frac{1}{b^{2 m}} \sum_{i=1}^{n}\left(\left(M^{m} v-w\right)_{i}\right)^{2}
$$

is nonzero and finite. (The intended interpretation in case $b=0$ is that $M^{m} v=w$ for all large m.) However, the limit need not exist in general.

B1 Since the rational numbers are dense in the reals, we can find positive integers a, b such that

$$
\frac{3 \varepsilon}{h k}<\frac{b}{a}<\frac{4 \varepsilon}{h k}
$$

By multiplying a and b by a suitably large positive integer, we can also ensure that $3 a^{2}>b$. We then have

$$
\frac{\varepsilon}{h k}<\frac{b}{3 a}<\frac{b}{\sqrt{a^{2}+b}+a}=\sqrt{a^{2}+b}-a
$$

and

$$
\sqrt{a^{2}+b}-a=\frac{b}{\sqrt{a^{2}+b}+a} \leq \frac{b}{2 a}<2 \frac{\varepsilon}{h k} .
$$

We may then take $m=k^{2}\left(a^{2}+b\right), n=h^{2} a^{2}$.
B2 Only the primes 2 and 5 appear seven or more times. The fact that these primes appear is demonstrated by the examples

$$
(2,5,2),(2,5,3),(2,7,5),(2,11,5)
$$

and their reversals.
It remains to show that if either $\ell=3$ or ℓ is a prime greater than 5 , then ℓ occurs at most six times as an element of a triple in S. Note that $(p, q, r) \in S$ if and only if $q^{2}-4 p r=a^{2}$ for some integer a; in particular, since $4 p r \geq 16$, this forces $q \geq 5$. In particular, q is odd, as then is a, and so $q^{2} \equiv a^{2} \equiv 1(\bmod 8) ;$ consequently, one of p, r must equal 2 . If $r=2$, then $8 p=q^{2}-a^{2}=$ $(q+a)(q-a)$; since both factors are of the same sign and their sum is the positive number $2 q$, both factors are positive. Since they are also both even, we have $q+a \in$ $\{2,4,2 p, 4 p\}$ and so $q \in\{2 p+1, p+2\}$. Similarly, if $p=2$, then $q \in\{2 r+1, r+2\}$. Consequently, ℓ occurs at most twice as many times as there are prime numbers in the list

$$
2 \ell+1, \ell+2, \frac{\ell-1}{2}, \ell-2
$$

For $\ell=3, \ell-2=1$ is not prime. For $\ell \geq 7$, the numbers $\ell-2, \ell, \ell+2$ cannot all be prime, since one of them is always a nontrivial multiple of 3 .
Remark. The above argument shows that the cases listed for 5 are the only ones that can occur. By contrast, there are infinitely many cases where 2 occurs if either the twin prime conjecture holds or there are infinitely many Sophie Germain primes (both of which are expected to be true).

B3 Yes, it follows that f is differentiable.
First solution. Note first that at $0, f / g$ and g are both continuous, as then is their product f. If $f(0) \neq 0$, then in some neighborhood of $0, f$ is either always positive or always negative. We can thus choose $\varepsilon \in\{ \pm 1\}$ so that εf is the composition of the differentiable function
$(f g) \cdot(f / g)$ with the square root function. By the chain rule, f is differentiable at 0 .
If $f(0)=0$, then $(f / g)(0)=0$, so we have

$$
(f / g)^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)}{x g(x)}
$$

Since g is continuous at 0 , we may multiply limits to deduce that $\lim _{x \rightarrow 0} f(x) / x$ exists.
Second solution. Choose a neighborhood N of 0 on which $g(x) \neq 0$. Define the following functions on $N \backslash$ $\{0\}: h_{1}(x)=\frac{f(x) g(x)-f(0) g(0)}{x} ; h_{2}(x)=\frac{f(x) g(0)-f(0) g(x)}{x g(0) g(x)} ;$ $h_{3}(x)=g(0) g(x) ; h_{4}(x)=\frac{1}{g(x)+g(0)}$. Then by assumption, $h_{1}, h_{2}, h_{3}, h_{4}$ all have limits as $x \rightarrow 0$. On the other hand,

$$
\frac{f(x)-f(0)}{x}=\left(h_{1}(x)+h_{2}(x) h_{3}(x)\right) h_{4}(x)
$$

and it follows that $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}$ exists, as desired.
B4 Number the games $1, \ldots, 2011$, and let $A=\left(a_{j k}\right)$ be the 2011×2011 matrix whose $j k$ entry is 1 if player k wins game j and $i=\sqrt{-1}$ if player k loses game j. Then $\overline{a_{h j}} a_{j k}$ is 1 if players h and k tie in game $j ; i$ if player h wins and player k loses in game j; and $-i$ if h loses and k wins. It follows that $T+i W=\bar{A}^{T} A$.
Now the determinant of A is unchanged if we subtract the first row of A from each of the other rows, producing a matrix whose rows, besides the first one, are $(1-i)$ times a row of integers. Thus we can write $\operatorname{det} A=(1-i)^{2010}(a+b i)$ for some integers a, b. But then $\operatorname{det}(T+i W)=\operatorname{det}\left(\bar{A}^{T} A\right)=2^{2010}\left(a^{2}+b^{2}\right)$ is a nonnegative integer multiple of 2^{2010}, as desired.

B5 Define the function

$$
f(y)=\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)\left(1+(x+y)^{2}\right)}
$$

For $y \geq 0$, in the range $-1 \leq x \leq 0$, we have

$$
\begin{aligned}
\left(1+x^{2}\right)\left(1+(x+y)^{2}\right) & \leq(1+1)\left(1+(1+y)^{2}\right)=2 y^{2}+4 y+4 \\
& \leq 2 y^{2}+4+2\left(y^{2}+1\right) \leq 6+6 y^{2}
\end{aligned}
$$

We thus have the lower bound

$$
f(y) \geq \frac{1}{6\left(1+y^{2}\right)}
$$

the same bound is valid for $y \leq 0$ because $f(y)=f(-y)$.
The original hypothesis can be written as

$$
\sum_{i, j=1}^{n} f\left(a_{i}-a_{j}\right) \leq A n
$$

and thus implies that

$$
\sum_{i, j=1}^{n} \frac{1}{1+\left(a_{i}-a_{j}\right)^{2}} \leq 6 A n
$$

By the Cauchy-Schwarz inequality, this implies

$$
\sum_{i, j=1}^{n}\left(1+\left(a_{i}-a_{j}\right)^{2}\right) \geq B n^{3}
$$

for $B=1 /(6 A)$.
Remark. One can also compute explicitly (using partial fractions, Fourier transforms, or contour integration) that $f(y)=\frac{2 \pi}{4+y^{2}}$.
Remark. Praveen Venkataramana points out that the lower bound can be improved to $B n^{4}$ as follows. For each $z \in \mathbb{Z}$, put $Q_{z, n}=\left\{i \in\{1, \ldots, n\}: a_{i} \in[z, z+1)\right\}$ and $q_{z, n}=\# Q_{z, n}$. Then $\sum_{z} q_{z, n}=n$ and

$$
6 A n \geq \sum_{i, j=1}^{n} \frac{1}{1+\left(a_{i}-a_{j}\right)^{2}} \geq \sum_{z \in \mathbb{Z}} \frac{1}{2} q_{z, n}^{2}
$$

If exactly k of the $q_{z, n}$ are nonzero, then $\sum_{z \in \mathbb{Z}} q_{z, n}^{2} \geq$ n^{2} / k by Jensen's inequality (or various other methods), so we must have $k \geq n /(6 A)$. Then

$$
\begin{aligned}
\sum_{i, j=1}^{n}\left(1+\left(a_{i}-a_{j}\right)^{2}\right) & \geq n^{2}+\sum_{i, j=1}^{k} \max \left\{0,(|i-j|-1)^{2}\right\} \\
& \geq n^{2}+\frac{k^{4}}{6}-\frac{2 k^{3}}{3}+\frac{5 k^{2}}{6}-\frac{k}{3}
\end{aligned}
$$

This is bounded below by $B n^{4}$ for some $B>0$.
In the opposite direction, one can weaken the initial upper bound to $A n^{4 / 3}$ and still derive a lower bound of $B n^{3}$. The argument is similar.

B6 In order to interpret the problem statement, one must choose a convention for the value of 0^{0}; we will take it to equal 1 . (If one takes 0^{0} to be 0 , then the problem fails for $p=3$.)
First solution. By Wilson's theorem,

$$
k!(p-1-k)!\equiv(-1)^{k}(p-1)!\equiv(-1)^{k+1} \quad(\bmod p)
$$

so we have a congruence of Laurent polynomials

$$
\begin{aligned}
\sum_{k=0}^{p-1} k!x^{k} & \equiv \sum_{k=0}^{p-1} \frac{(-1)^{k+1} x^{k}}{(p-1-k)!} \quad(\bmod p) \\
& \equiv-x^{p-1} \sum_{k=0}^{p-1} \frac{(-x)^{-k}}{k!} \quad(\bmod p)
\end{aligned}
$$

Replacing x with $-1 / x$, we reduce the original problem to showing that the polynomial

$$
g(x)=\sum_{k=0}^{p-1} \frac{x^{k}}{k!}
$$

over \mathbb{F}_{p} has at most $(p-1) / 2$ nonzero roots in \mathbb{F}_{p}. To see this, write

$$
h(x)=x^{p}-x+g(x)
$$

and note that by Wilson's theorem again,

$$
h^{\prime}(x)=1+\sum_{k=1}^{p-1} \frac{x^{k-1}}{(k-1)!}=x^{p-1}-1+g(x)
$$

If $z \in \mathbb{F}_{p}$ is such that $g(z)=0$, then $z \neq 0$ because $g(0)=$ 1. Therefore, $z^{p-1}=1$, so $h(z)=h^{\prime}(z)=0$ and so z is at least a double root of h. Since h is a polynomial of degree p, there can be at most $(p-1) / 2$ zeroes of g in \mathbb{F}_{p}, as desired.
Second solution. (By Noam Elkies) Define the polynomial f over \mathbb{F}_{p} by

$$
f(x)=\sum_{k=0}^{p-1} k!x^{k}
$$

Put $t=(p-1) / 2$; the problem statement is that f has at most t roots modulo p. Suppose the contrary; since $f(0)=1$, this means that $f(x)$ is nonzero for at most $t-1$ values of $x \in \mathbb{F}_{p}^{*}$. Denote these values by x_{1}, \ldots, x_{m}, where by assumption $m<t$, and define the polynomial Q over \mathbb{F}_{p} by

$$
Q(x)=\prod_{k=1}^{m}\left(x-x_{m}\right)=\sum_{k=0}^{t-1} Q_{k} x^{k}
$$

Then we can write

$$
f(x)=\frac{P(x)}{Q(x)}\left(1-x^{p-1}\right)
$$

where $P(x)$ is some polynomial of degree at most m. This means that the power series expansions of $f(x)$ and $P(x) / Q(x)$ coincide modulo x^{p-1}, so the coefficients of $x^{t}, \ldots, x^{2 t-1}$ in $f(x) Q(x)$ vanish. In other words, the product of the square matrix

$$
A=((i+j+1)!)_{i, j=0}^{t-1}
$$

with the nonzero column vector $\left(Q_{t-1}, \ldots, Q_{0}\right)$ is zero. However, by the following lemma, $\operatorname{det}(A)$ is nonzero modulo p, a contradiction.

Lemma 1. For any nonnegative integer m and any integer n,

$$
\operatorname{det}((i+j+n)!)_{i, j=0}^{m}=\prod_{k=0}^{m} k!(k+n)!.
$$

Proof. Define the $(m+1) \times(m+1)$ matrix $A_{m, n}$ by $\left(A_{m, n}\right)_{i, j}=$ $\binom{i+j+n}{i}$; the desired result is then that $\operatorname{det}\left(A_{m, n}\right)=1$. Note that

$$
\left(A_{m, n-1}\right)_{i j}= \begin{cases}\left(A_{m, n}\right)_{i j} & i=0 \\ \left(A_{m, n}\right)_{i j}-\left(A_{m, n}\right)_{(i-1) j} & i>0\end{cases}
$$

that is, $A_{m, n-1}$ can be obtained from $A_{m, n}$ by elementary row operations. Therefore, $\operatorname{det}\left(A_{m, n}\right)=\operatorname{det}\left(A_{m, n-1}\right)$, $\operatorname{sodet}\left(A_{m, n}\right)$ depends only on m. The claim now follows by observing that $A_{0,0}$ is the 1×1 matrix with entry 1 and that $A_{m,-1}$ has the block representation $\left(\begin{array}{cc}1 & * \\ 0 & A_{m-1,0}\end{array}\right)$.

Remark. Elkies has given a more detailed
http://mathoverflow.net/questions/82648. discussion of the origins of this solution in the theory of orthogonal polynomials; see

