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A1 We claim that the set of points with 0 ≤ x ≤ 2011 and
0≤ y≤ 2011 that cannot be the last point of a growing
spiral are as follows: (0,y) for 0≤ y≤ 2011; (x,0) and
(x,1) for 1 ≤ x ≤ 2011; (x,2) for 2 ≤ x ≤ 2011; and
(x,3) for 3≤ x≤ 2011. This gives a total of

2012+2011+2011+2010+2009 = 10053

excluded points.

The complement of this set is the set of (x,y) with 0 <
x < y, along with (x,y) with x ≥ y ≥ 4. Clearly the
former set is achievable as P2 in a growing spiral, while
a point (x,y) in the latter set is P6 in a growing spiral
with successive lengths 1, 2, 3, x+1, x+2, and x+ y−
1.

We now need to rule out the other cases. Write x1 <
y1 < x2 < y2 < .. . for the lengths of the line segments
in the spiral in order, so that P1 = (x1,0), P2 = (x1,y1),
P3 = (x1− x2,y1), and so forth. Any point beyond P0
has x-coordinate of the form x1− x2 + · · ·+(−1)n−1xn
for n ≥ 1; if n is odd, we can write this as x1 +(−x2 +
x3)+ · · ·+(−xn−1 + xn)> 0, while if n is even, we can
write this as (x1− x2)+ · · ·+(xn−1− xn) < 0. Thus no
point beyond P0 can have x-coordinate 0, and we have
ruled out (0,y) for 0≤ y≤ 2011.

Next we claim that any point beyond P3 must have
y-coordinate either negative or ≥ 4. Indeed, each
such point has y-coordinate of the form y1− y2 + · · ·+
(−1)n−1yn for n≥ 2, which we can write as (y1−y2)+
· · ·+(yn−1− yn)< 0 if n is even, and

y1 +(−y2 + y3)+ · · ·+(−yn−1 + yn)≥ y1 +2≥ 4

if n≥ 3 is odd. Thus to rule out the rest of the forbidden
points, it suffices to check that they cannot be P2 or P3
for any growing spiral. But none of them can be P3 =
(x1− x2,y1) since x1− x2 < 0, and none of them can
be P2 = (x1,y1) since they all have y-coordinate at most
equal to their x-coordinate.

A2 For m≥ 1, write

Sm =
3
2

(
1− b1 · · ·bm

(b1 +2) · · ·(bm +2)

)
.

Then S1 = 1 = 1/a1 and a quick calculation yields

Sm−Sm−1 =
b1 · · ·bm−1

(b2 +2) · · ·(bm +2)
=

1
a1 · · ·am

for m≥ 2, since a j = (b j +2)/b j−1 for j≥ 2. It follows
that Sm = ∑

m
n=1 1/(a1 · · ·an).

Now if (b j) is bounded above by B, then b j
b j+2 ≤

B
B+2

for all j, and so 3/2 > Sm ≥ 3/2(1− ( B
B+2 )

m). Since
B

B+2 < 1, it follows that the sequence (Sm) converges to
S = 3/2.

A3 We claim that (c,L) = (−1,2/π) works. Write f (r) =∫ π/2
0 xr sinxdx. Then

f (r)<
∫

π/2

0
xr dx =

(π/2)r+1

r+1

while since sinx≥ 2x/π for x≤ π/2,

f (r)>
∫

π/2

0

2xr+1

π
dx =

(π/2)r+1

r+2
.

It follows that

lim
r→∞

r
(

2
π

)r+1

f (r) = 1,

whence

lim
r→∞

f (r)
f (r+1)

= lim
r→∞

r(2/π)r+1 f (r)
(r+1)(2/π)r+2 f (r+1)

· 2(r+1)
πr

=
2
π
.

Now by integration by parts, we have∫
π/2

0
xr cosxdx =

1
r+1

∫
π/2

0
xr+1 sinxdx =

f (r+1)
r+1

.

Thus setting c =−1 in the given limit yields

lim
r→∞

(r+1) f (r)
r f (r+1)

=
2
π
,

as desired.

A4 The answer is n odd. Let I denote the n× n identity
matrix, and let A denote the n× n matrix all of whose
entries are 1. If n is odd, then the matrix A− I satisfies
the conditions of the problem: the dot product of any
row with itself is n−1, and the dot product of any two
distinct rows is n−2.

Conversely, suppose n is even, and suppose that the ma-
trix M satisfied the conditions of the problem. Consider
all matrices and vectors mod 2. Since the dot product
of a row with itself is equal mod 2 to the sum of the en-
tries of the row, we have Mv = 0 where v is the vector
(1,1, . . . ,1), and so M is singular. On the other hand,
MMT = A− I; since

(A− I)2 = A2−2A+ I = (n−2)A+ I = I,

we have (detM)2 = det(A− I) = 1 and detM = 1, con-
tradicting the fact that M is singular.
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A5 (by Abhinav Kumar) Define G : R → R by G(x) =∫ x
0 g(t)dt. By assumption, G is a strictly increasing,

thrice continuously differentiable function. It is also
bounded: for x > 1, we have

0 < G(x)−G(1) =
∫ x

1
g(t)dt ≤

∫ x

1
dt/t2 = 1,

and similarly, for x <−1, we have 0>G(x)−G(−1)≥
−1. It follows that the image of G is some open interval
(A,B) and that G−1 : (A,B)→ R is also thrice continu-
ously differentiable.

Define H : (A,B) × (A,B) → R by H(x,y) =
F(G−1(x),G−1(y)); it is twice continuously dif-
ferentiable since F and G−1 are. By our assumptions
about F ,

∂H
∂x

+
∂H
∂y

=
∂F
∂x

(G−1(x),G−1(y)) · 1
g(G−1(x))

+
∂F
∂y

(G−1(x),G−1(y)) · 1
g(G−1(y))

= 0.

Therefore H is constant along any line parallel to the
vector (1,1), or equivalently, H(x,y) depends only on
x− y. We may thus write H(x,y) = h(x− y) for some
function h on (−(B− A),B− A), and we then have
F(x,y) = h(G(x)−G(y)). Since F(u,u) = 0, we have
h(0) = 0. Also, h is twice continuously differentiable
(since it can be written as h(x) = H((A+B+x)/2,(A+
B− x)/2)), so |h′| is bounded on the closed interval
[−(B−A)/2,(B−A)/2], say by M.

Given x1, . . . ,xn+1 ∈ R for some n ≥ 2, the numbers
G(x1), . . . ,G(xn+1) all belong to (A,B), so we can
choose indices i and j so that |G(xi)−G(x j)| ≤ (B−
A)/n≤ (B−A)/2. By the mean value theorem,

|F(xi,x j)|= |h(G(xi)−G(x j))| ≤M
B−A

n
,

so the claim holds with C = M(B−A).

A6 Choose some ordering h1, . . . ,hn of the elements of G
with h1 = e. Define an n×n matrix M by settting Mi j =
1/k if h j = hig for some g ∈ {g1, . . . ,gk} and Mi j = 0
otherwise. Let v denote the column vector (1,0, . . . ,0).
The probability that the product of m random elements
of {g1, . . . ,gk} equals hi can then be interpreted as the
i-th component of the vector Mmv.

Let Ĝ denote the dual group of G, i.e., the group
of complex-valued characters of G. Let ê ∈ Ĝ de-
note the trivial character. For each χ ∈ Ĝ, the vector
vχ = (χ(hi))

n
i=1 is an eigenvector of M with eigenvalue

λχ = (χ(g1) + · · ·+ χ(gk))/k. In particular, vê is the
all-ones vector and λê = 1. Put

b = max{|λχ | : χ ∈ Ĝ−{ê}};

we show that b ∈ (0,1) as follows. First suppose b = 0;
then

1 = ∑
χ∈Ĝ

λχ =
1
k

k

∑
i=1

∑
χ∈Ĝ

χ(gi) =
n
k

because ∑
χ∈(̂G)

χ(gi) equals n for i = 1 and 0 oth-
erwise. However, this contradicts the hypothesis that
{g1, . . . ,gk} is not all of G. Hence b > 0. Next suppose
b = 1, and choose χ ∈ Ĝ−{ê} with |λχ | = 1. Since
each of χ(g1), . . . ,χ(gk) is a complex number of norm
1, the triangle inequality forces them all to be equal.
Since χ(g1) = χ(e) = 1, χ must map each of g1, . . . ,gk
to 1, but this is impossible because χ is a nontrivial
character and g1, . . . ,gk form a set of generators of G.
This contradiction yields b < 1.

Since v = 1
n ∑χ∈Ĝ vχ and Mvχ = λχ vχ , we have

Mmv− 1
n

vê =
1
n ∑

χ∈Ĝ−{ê}
λ

m
χ vχ .

Since the vectors vχ are pairwise orthogonal, the limit
we are interested in can be written as

lim
m→∞

1
b2m (Mmv− 1

n
vê) · (Mmv− 1

n
vê).

and then rewritten as

lim
m→∞

1
b2m ∑

χ∈Ĝ−{ê}
|λχ |2m = #{χ ∈ Ĝ : |λχ |= b}.

By construction, this last quantity is nonzero and finite.

Remark. It is easy to see that the result fails if we do
not assume g1 = e: take G = Z/2Z, n = 1, and g1 = 1.

Remark. Harm Derksen points out that a similar ar-
gument applies even if G is not assumed to be abelian,
provided that the operator g1 + · · ·+gk in the group al-
gebra Z[G] is normal, i.e., it commutes with the op-
erator g−1

1 + · · ·+ g−1
k . This includes the cases where

the set {g1, . . . ,gk} is closed under taking inverses and
where it is a union of conjugacy classes (which in turn
includes the case of G abelian).

Remark. The matrix M used above has nonnegative
entries with row sums equal to 1 (i.e., it corresponds to
a Markov chain), and there exists a positive integer m
such that Mm has positive entries. For any such matrix,
the Perron-Frobenius theorem implies that the sequence
of vectors Mmv converges to a limit w, and there exists
b ∈ [0,1) such that

limsup
m→∞

1
b2m

n

∑
i=1

((Mmv−w)i)
2

is nonzero and finite. (The intended interpretation in
case b = 0 is that Mmv = w for all large m.) However,
the limit need not exist in general.
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B1 Since the rational numbers are dense in the reals, we
can find positive integers a,b such that

3ε

hk
<

b
a
<

4ε

hk
.

By multiplying a and b by a suitably large positive in-
teger, we can also ensure that 3a2 > b. We then have

ε

hk
<

b
3a

<
b√

a2 +b+a
=
√

a2 +b−a

and√
a2 +b−a =

b√
a2 +b+a

≤ b
2a

< 2
ε

hk
.

We may then take m = k2(a2 +b),n = h2a2.

B2 Only the primes 2 and 5 appear seven or more times.
The fact that these primes appear is demonstrated by
the examples

(2,5,2),(2,5,3),(2,7,5),(2,11,5)

and their reversals.

It remains to show that if either ` = 3 or ` is a prime
greater than 5, then ` occurs at most six times as an
element of a triple in S. Note that (p,q,r) ∈ S if and
only if q2− 4pr = a2 for some integer a; in particular,
since 4pr≥ 16, this forces q≥ 5. In particular, q is odd,
as then is a, and so q2 ≡ a2 ≡ 1 (mod 8); consequently,
one of p,r must equal 2. If r = 2, then 8p = q2−a2 =
(q+ a)(q− a); since both factors are of the same sign
and their sum is the positive number 2q, both factors are
positive. Since they are also both even, we have q+a ∈
{2,4,2p,4p} and so q ∈ {2p+ 1, p+ 2}. Similarly, if
p = 2, then q ∈ {2r+1,r+2}. Consequently, ` occurs
at most twice as many times as there are prime numbers
in the list

2`+1, `+2,
`−1

2
, `−2.

For `= 3,`−2 = 1 is not prime. For `≥ 7, the numbers
`− 2, `, `+ 2 cannot all be prime, since one of them is
always a nontrivial multiple of 3.

Remark. The above argument shows that the cases
listed for 5 are the only ones that can occur. By con-
trast, there are infinitely many cases where 2 occurs if
either the twin prime conjecture holds or there are in-
finitely many Sophie Germain primes (both of which
are expected to be true).

B3 Yes, it follows that f is differentiable.

First solution. Note first that at 0, f/g and g are both
continuous, as then is their product f . If f (0) 6= 0, then
in some neighborhood of 0, f is either always positive
or always negative. We can thus choose ε ∈ {±1} so
that ε f is the composition of the differentiable function

( f g) · ( f/g) with the square root function. By the chain
rule, f is differentiable at 0.

If f (0) = 0, then ( f/g)(0) = 0, so we have

( f/g)′(0) = lim
x→0

f (x)
xg(x)

.

Since g is continuous at 0, we may multiply limits to
deduce that limx→0 f (x)/x exists.

Second solution. Choose a neighborhood N of 0 on
which g(x) 6= 0. Define the following functions on N \
{0}: h1(x) =

f (x)g(x)− f (0)g(0)
x ; h2(x) =

f (x)g(0)− f (0)g(x)
xg(0)g(x) ;

h3(x) = g(0)g(x); h4(x) = 1
g(x)+g(0) . Then by assump-

tion, h1,h2,h3,h4 all have limits as x→ 0. On the other
hand,

f (x)− f (0)
x

= (h1(x)+h2(x)h3(x))h4(x),

and it follows that limx→0
f (x)− f (0)

x exists, as desired.

B4 Number the games 1, . . . ,2011, and let A = (a jk) be the
2011×2011 matrix whose jk entry is 1 if player k wins
game j and i =

√
−1 if player k loses game j. Then

ah ja jk is 1 if players h and k tie in game j; i if player h
wins and player k loses in game j; and −i if h loses and
k wins. It follows that T + iW = AT A.

Now the determinant of A is unchanged if we subtract
the first row of A from each of the other rows, pro-
ducing a matrix whose rows, besides the first one, are
(1− i) times a row of integers. Thus we can write
detA = (1− i)2010(a+ bi) for some integers a,b. But
then det(T + iW ) = det(AT A) = 22010(a2+b2) is a non-
negative integer multiple of 22010, as desired.

B5 Define the function

f (y) =
∫

∞

−∞

dx
(1+ x2)(1+(x+ y)2)

.

For y≥ 0, in the range −1≤ x≤ 0, we have

(1+ x2)(1+(x+ y)2)≤ (1+1)(1+(1+ y)2) = 2y2 +4y+4

≤ 2y2 +4+2(y2 +1)≤ 6+6y2.

We thus have the lower bound

f (y)≥ 1
6(1+ y2)

;

the same bound is valid for y≤ 0 because f (y)= f (−y).

The original hypothesis can be written as

n

∑
i, j=1

f (ai−a j)≤ An

and thus implies that

n

∑
i, j=1

1
1+(ai−a j)2 ≤ 6An.
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By the Cauchy-Schwarz inequality, this implies

n

∑
i, j=1

(1+(ai−a j)
2)≥ Bn3

for B = 1/(6A).

Remark. One can also compute explicitly (using par-
tial fractions, Fourier transforms, or contour integra-
tion) that f (y) = 2π

4+y2 .

Remark. Praveen Venkataramana points out that the
lower bound can be improved to Bn4 as follows. For
each z ∈ Z, put Qz,n = {i ∈ {1, . . . ,n} : ai ∈ [z,z+ 1)}
and qz,n = #Qz,n. Then ∑z qz,n = n and

6An≥
n

∑
i, j=1

1
1+(ai−a j)2 ≥ ∑

z∈Z

1
2

q2
z,n.

If exactly k of the qz,n are nonzero, then ∑z∈Z q2
z,n ≥

n2/k by Jensen’s inequality (or various other methods),
so we must have k ≥ n/(6A). Then

n

∑
i, j=1

(1+(ai−a j)
2)≥ n2 +

k

∑
i, j=1

max{0,(|i− j|−1)2}

≥ n2 +
k4

6
− 2k3

3
+

5k2

6
− k

3
.

This is bounded below by Bn4 for some B > 0.

In the opposite direction, one can weaken the initial up-
per bound to An4/3 and still derive a lower bound of
Bn3. The argument is similar.

B6 In order to interpret the problem statement, one must
choose a convention for the value of 00; we will take it
to equal 1. (If one takes 00 to be 0, then the problem
fails for p = 3.)

First solution. By Wilson’s theorem,

k!(p−1− k)!≡ (−1)k(p−1)!≡ (−1)k+1 (mod p),

so we have a congruence of Laurent polynomials

p−1

∑
k=0

k!xk ≡
p−1

∑
k=0

(−1)k+1xk

(p−1− k)!
(mod p)

≡−xp−1
p−1

∑
k=0

(−x)−k

k!
(mod p).

Replacing x with−1/x, we reduce the original problem
to showing that the polynomial

g(x) =
p−1

∑
k=0

xk

k!

over Fp has at most (p− 1)/2 nonzero roots in Fp. To
see this, write

h(x) = xp− x+g(x)

and note that by Wilson’s theorem again,

h′(x) = 1+
p−1

∑
k=1

xk−1

(k−1)!
= xp−1−1+g(x).

If z∈Fp is such that g(z)= 0, then z 6= 0 because g(0)=
1. Therefore, zp−1 = 1, so h(z) = h′(z) = 0 and so z is
at least a double root of h. Since h is a polynomial of
degree p, there can be at most (p−1)/2 zeroes of g in
Fp, as desired.

Second solution. (By Noam Elkies) Define the polyno-
mial f over Fp by

f (x) =
p−1

∑
k=0

k!xk.

Put t = (p− 1)/2; the problem statement is that f has
at most t roots modulo p. Suppose the contrary; since
f (0) = 1, this means that f (x) is nonzero for at most
t−1 values of x∈F∗p. Denote these values by x1, . . . ,xm,
where by assumption m < t, and define the polynomial
Q over Fp by

Q(x) =
m

∏
k=1

(x− xm) =
t−1

∑
k=0

Qkxk.

Then we can write

f (x) =
P(x)
Q(x)

(1− xp−1)

where P(x) is some polynomial of degree at most m.
This means that the power series expansions of f (x) and
P(x)/Q(x) coincide modulo xp−1, so the coefficients of
xt , . . . ,x2t−1 in f (x)Q(x) vanish. In other words, the
product of the square matrix

A = ((i+ j+1)!)t−1
i, j=0

with the nonzero column vector (Qt−1, . . . ,Q0) is zero.
However, by the following lemma, det(A) is nonzero
modulo p, a contradiction.

Lemma 1. For any nonnegative integer m and any integer n,

det((i+ j+n)!)m
i, j=0 =

m

∏
k=0

k!(k+n)!.

Proof. Define the (m+1)×(m+1) matrix Am,n by (Am,n)i, j =(i+ j+n
i

)
; the desired result is then that det(Am,n) = 1. Note that

(Am,n−1)i j =

{
(Am,n)i j i = 0
(Am,n)i j− (Am,n)(i−1) j i > 0;

that is, Am,n−1 can be obtained from Am,n by elementary row
operations. Therefore, det(Am,n) = det(Am,n−1), so det(Am,n)
depends only on m. The claim now follows by observing that
A0,0 is the 1× 1 matrix with entry 1 and that Am,−1 has the

block representation
(

1 ∗
0 Am−1,0

)
.
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Remark. Elkies has given a more detailed
discussion of the origins of this solution in
the theory of orthogonal polynomials; see

http://mathoverflow.net/questions/82648.


